मराठी

Limn→∞tan{∑r=1ntan-1(11+r+r2)} is equal to ______. -

Advertisements
Advertisements

प्रश्न

`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______. 

पर्याय

  • 0

  • 1

  • 2

  • 3

MCQ
रिकाम्या जागा भरा

उत्तर

`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to 1

Explanation:

Given: `lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}`

Let Tr = `tan^-1(1/(1 + r + r^2))`

= `tan^-1(1/(1 + r(r + 1)))`

1 can be written as (r + 1) – r

Tr = `tan^-1(((r + 1) - r)/(1 + (r + 1)r))`  ...`(∵ tan^-1((x - y)/(1 + xy)) = tan^-1x - tan^-1y)`

Tr = tan–1(r + 1) – tan–1(r)

T1 = tan–1(2) – tan–1(1)

T2 = tan–1(3) – tan–1(2)

T3 = tan–1(4) – tan–1(3)
.
.
.
.
.
.
Tn = tan–1(n + 1) – tan–1(n)

Adding all, we get

`sum_(r = 1)^n tan^-1(1/(1 + r + r^2))` = tan–1(n + 1) – tan–1(1)  ...(i)

= `tan^-1(((n + 1) - 1)/(1 + n + 1))`

= `tan^-1(n/(n + 2))`

= `tan^-1(1/(1 + 2/n))`

`lim_(n→∞)sum_(r = 1)^n tan^-1(1/(1 + r + r^2)) = tan^-1(1) = π/4`

`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))} = tan  π/4` = 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×