Advertisements
Advertisements
प्रश्न
`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______.
विकल्प
0
1
2
3
उत्तर
`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to 1.
Explanation:
Given: `lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}`
Let Tr = `tan^-1(1/(1 + r + r^2))`
= `tan^-1(1/(1 + r(r + 1)))`
1 can be written as (r + 1) – r
Tr = `tan^-1(((r + 1) - r)/(1 + (r + 1)r))` ...`(∵ tan^-1((x - y)/(1 + xy)) = tan^-1x - tan^-1y)`
Tr = tan–1(r + 1) – tan–1(r)
T1 = tan–1(2) – tan–1(1)
T2 = tan–1(3) – tan–1(2)
T3 = tan–1(4) – tan–1(3)
.
.
.
.
.
.
Tn = tan–1(n + 1) – tan–1(n)
Adding all, we get
`sum_(r = 1)^n tan^-1(1/(1 + r + r^2))` = tan–1(n + 1) – tan–1(1) ...(i)
= `tan^-1(((n + 1) - 1)/(1 + n + 1))`
= `tan^-1(n/(n + 2))`
= `tan^-1(1/(1 + 2/n))`
`lim_(n→∞)sum_(r = 1)^n tan^-1(1/(1 + r + r^2)) = tan^-1(1) = π/4`
`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))} = tan π/4` = 1