Advertisements
Advertisements
प्रश्न
Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`
उत्तर
`tan^-1 [((x-1)/(x-2)+ (x+1)/(x+2))/(1-((x-1)/(x-2)) ((x+1)/(x+2))]] = pi/4`
`((x-1)(x+2)+(x + 1)(x-2))/((x-2)(x+2)-(x-1)(x+1))= tan pi/4`
`(x^2 + 2x - x - 2+ x^2 - 2x + x-2)/((x^2-4)-(x^2-1))=1`
`(2x^2 - 4)/-3 = 1`
`2x^2 - 4 =-3 `
`2x^2 = -1`
`x^2 = 1/2`
`x = ± 1/sqrt2`
APPEARS IN
संबंधित प्रश्न
Find the principal values of `sin^(-1) (-1/2)`
Find the principal value of `tan^(-1) (-sqrt3)`
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Find the principal solutions of the following equation:
cot 2θ = 0.
The principal value of cos−1`(-1/2)` is ______
If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Solve `tan^-1 2x + tan^-1 3x = pi/4`
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
If `sin^-1(x/13) + cosec^-1(13/12) = pi/2`, then the value of x is ______
`sin^2(sin^-1 1/2) + tan^2 (sec^-1 2) + cot^2(cosec^-1 4)` = ______.
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
`tan[2tan^-1 (1/3) - pi/4]` = ______.
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
`2 "tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`
Reason (R): sec–1(–2) = `- pi/4`
`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.
Number of values of x which lie in [0, 2π] and satisfy the equation
`(cos x/4 - 2sinx) sinx + (1 + sin x/4 - 2cosx)cosx` = 0
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
sin [cot–1 (cos (tan–1 x))] = ______.
If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`
Prove that:
tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1