Advertisements
Advertisements
प्रश्न
Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`
Reason (R): sec–1(–2) = `- pi/4`
पर्याय
Both A and R are true and R is the correct explanation of A.
Both A and R are true but R is not the correct explanation of A.
A is true but R is false.
A is false but R is true.
उत्तर
A is true but R is false.
Explanation:
sec–1x is defined if x ≤ −1 or x ≥ 1.
Hence, sec–12x will be defined if `x ≤ - 1/2` or `x ≥ 1/2`.
Hence, A is true.
The range of the function sec–1x is [0, π] − `{pi/2}`
R is false.
APPEARS IN
संबंधित प्रश्न
Find the principal value of `cos^(-1) (-1/2)`
Find the principal value of `cos^(-1) (-1/sqrt2)`
Find the value of the following:
`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
Find the set of values of `cosec^-1(sqrt3/2)`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA
Find the principal value of the following: tan- 1( - √3)
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
Prove the following:
`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Prove that:
`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`
Evaluate:
`cos[tan^-1 (3/4)]`
Find the principal value of `sec^-1 (- sqrt(2))`
A man standing directly opposite to one side of a road of width x meter views a circular shaped traffic green signal of diameter ‘a’ meter on the other side of the road. The bottom of the green signal Is ‘b’ meter height from the horizontal level of viewer’s eye. If ‘a’ denotes the angle subtended by the diameter of the green signal at the viewer’s eye, then prove that α = `tan^-1 (("a" + "b")/x) - tan^-1 ("b"/x)`
lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______
If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.
The domain of y = cos–1(x2 – 4) is ______.
The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.
sin [cot–1 (cos (tan–1 x))] = ______.