Advertisements
Advertisements
प्रश्न
Find the value of the following:
`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
उत्तर
We know that the range of principlal value branch of cos-1 and sin-1 are [0, π] and `[-pi/2, pi/2]` respectively.
Let `cos^(-1) (1/2) = x`
= `1/2 = cos x,`
Then, `1/2 = cos (pi/3), "where" pi/3 ∈ [0, pi]`
Let `sin^(-1) (1/2) = y`
= `1/2 = sin y`
then, `1/2 = sin = y (pi/6), "where" pi/6 ∈ [-pi/2, pi/2]`
∴ `cos^(-1) (1/2) + 2sin^(-1) (1/2) = pi/3 + 2* pi/6`
= `pi/3 + pi/3 = (2pi)/3`
APPEARS IN
संबंधित प्रश्न
Find the principal value of tan−1 (−1)
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
Evaluate the following:
`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
Find the principal solutions of the following equation:
cot 2θ = 0.
The principal value of sin−1`(1/2)` is ______
Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`
Show that `sin^-1(3/5) + sin^-1(8/17) = cos^-1(36/85)`
Find the principal value of the following:
`sin^-1 (- 1/2)`
Prove that:
`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
Find the principal value of `sin^-1 1/sqrt(2)`
A man standing directly opposite to one side of a road of width x meter views a circular shaped traffic green signal of diameter ‘a’ meter on the other side of the road. The bottom of the green signal Is ‘b’ meter height from the horizontal level of viewer’s eye. If ‘a’ denotes the angle subtended by the diameter of the green signal at the viewer’s eye, then prove that α = `tan^-1 (("a" + "b")/x) - tan^-1 ("b"/x)`
The value of cot `(tan^-1 2x + cot^-1 2x)` is ______
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______
The value of cot (- 1110°) is equal to ______.
If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`
The domain of the function defined by f(x) = sin–1x + cosx is ______.
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
Find the value, if sin–1x = y, then `->`:-
`sin(tan^-1x), |x| < 1` is equal to
Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d)
Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
Solve for x:
5tan–1x + 3cot–1x = 2π