Advertisements
Advertisements
प्रश्न
Solve for x:
5tan–1x + 3cot–1x = 2π
उत्तर
5tan–1x + 3cot–1x = 2π
`\implies 5tan^-1x + 3(π/2 - tan^-1x)` = 2π
`\implies` 5tan–1x – 3tan–1x = `2π - (3π)/2`
2tan–1x = `π/2`
tan–1x = `π/4`
x = `tan π/4`
= 1
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
Find the set of values of `cosec^-1(sqrt3/2)`
Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Prove that cot−1(7) + 2 cot−1(3) = `pi/4`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
The domain of the function y = sin–1 (– x2) is ______.
Prove that `cot(pi/4 - 2cot^-1 3)` = 7
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.
The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
Domain and Rariges of cos–1 is:-
Find the principal value of `tan^-1 (sqrt(3))`
`sin(tan^-1x), |x| < 1` is equal to
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
what is the value of `cos^-1 (cos (13pi)/6)`
What is the values of `cos^-1 (cos (7pi)/6)`
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
Find the value of `sin(2cos^-1 sqrt(5)/3)`.