मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.

पर्याय

  • 0

  • – 3

  • `-1/3`

  • `1/2`

MCQ
रिकाम्या जागा भरा

उत्तर

If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = `bb(1/2)`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2021-2022 (March) Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `


Show that `2sin^-1(3/5) = tan^-1(24/7)`


Show that:

`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`


Find the principal values of `sin^(-1) (-1/2)`


Find the principal value of tan−1 (−1)


Find the principal value of  `sec^(-1) (2/sqrt(3))`


Find the value of the following:

`cos^(-1) (cos  (13pi)/6)`


Prove that:

`tan^-1  ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`

[Hint: put x =  cos 2θ]


Find the principal value of `sin^-1(1/sqrt2)`


Find the domain of the following function:

`f(x)=sin^-1x^2`

 


Find the domain of the following function:

`f(x) = sin^-1x + sinx`


Find the domain of the following function:

`f(x)=sin^-1x+sin^-1 2x`


Evaluate the following:

`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`


Evaluate the following:

`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`


Find the domain of `f(x)=cotx+cot^-1x`


Evaluate the following:

`cot^-1  1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`


Evaluate the following:

`cot^-1{2cos(sin^-1  sqrt3/2)}`


Prove that:
cot−1 7 + cot​−1 8 + cot​−1 18 = cot​−1 3 .


Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)


Find the principal value of the following: tan-1(– 1)


Prove the following: 

`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`


Prove the following:

`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`


Find the principal solutions of the following equation:
tan 5θ = -1


The principal value of sin−1`(1/2)` is ______


`tan^-1(tan  (7pi)/6)` = ______


If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______


Evaluate cot(tan−1(2x) + cot−1(2x))


Evaluate:

`sin[cos^-1 (3/5)]`


Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1


Prove that cot−1(7) + 2 cot−1(3) = `pi/4`


Find the principal value of the following:

tan-1 (-1)


Prove that:

2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`


Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`


Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


Find the principal value of cosec–1(– 1)


In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______


The value of 2 `cot^-1  1/2 - cot^-1  4/3` is ______ 


If sin `(sin^-1  1/3 + cos^-1 x) = 1`, then the value of x is ______.


`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.


If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.


The domain of the function y = sin–1 (– x2) is ______.


The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.


Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`


If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.


Show that `cos(2tan^-1  1/7) = sin(4tan^-1  1/3)`


All trigonometric functions have inverse over their respective domains.


`"cos"  2 theta` is not equal to ____________.


`"sin"^2 25° +  "sin"^2 65°` is equal to ____________.


`("cos" 8° -  "sin" 8°)/("cos" 8° +  "sin" 8°)`  is equal to ____________.


`"sin"  265° -  "cos"  265°` is ____________.


If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.


Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.


The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.


`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.


`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`


`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.


The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is


If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is


If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to


Domain and Rariges of cos–1 is:-


What will be the principal value of `sin^-1(-1/2)`?


`2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`, then 'x' will be equal to


Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`

Reason (R): sec–1(–2) = `- pi/4`


`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______. 


If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.


Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d) 


cos–1(cos10) is equal to ______.


If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.


If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`


The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.


If tan–1 2x + tan–1 3x = `π/4`, then x = ______.


If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.


sin [cot–1 (cos (tan–1 x))] = ______.


If sin–1x – cos–1x = `π/6`, then x = ______.


Prove that:

tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1


Find the value of `sin(2cos^-1  sqrt(5)/3)`.


Solve for x:

5tan–1x + 3cot–1x = 2π


Find the value of `tan^-1(x/y) + tan^-1((y - x)/(y + x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×