मराठी

Sin [cot–1 (cos (tan–1 x))] = ______. -

Advertisements
Advertisements

प्रश्न

sin [cot–1 (cos (tan–1 x))] = ______.

पर्याय

  • `sqrt((x^2 - 1)/(x^2 + 2))`

  • `sqrt((x - 2)/(x^2 + 1))`

  • `sqrt((x^2 + 1)/(x^2 + 2))`

  • `1/sqrt(x^2 - 1)`

MCQ
रिकाम्या जागा भरा

उत्तर

sin [cot–1 (cos (tan–1 x))] = `underlinebb(sqrt((x^2 + 1)/(x^2 + 2)))`.

Explanation:

Let tan–1 x = y   ...(i)

tan y `\implies` tan y = y = x / 1


In ΔABC,

tan y = AB / BC = x

By Pythagoras theorem,

AC2 = AB2 + BC2

`\implies` AC2 = x2 + 12 = x2 + 1

`\implies` AC = `sqrt(x^2 + 1)`

∴ cos y = `(BC)/(AC) = 1/sqrt(x^2 + 1)`  ...(ii)

`\implies` y = `cos^-1(1/sqrt(x^2 + 1))`

Now, 

let cot–1 (cos (y)) = z  ...(iii)

cot z = cos y

`\implies` cot z = `1/sqrt(x^2 + 1)`  ...[Using equation (ii)]

`\implies` z = `cot^-1 (1/sqrt(x^2 + 1))`

In ΔPQR,

cot z = `(QR)/(PQ) = 1/sqrt(x^2 + 1)`

By Pythagoras theorem,

PR2 = PQ2 + QR2

∴ PR = `sqrt(x^2 + 2)`

So, sin z = `sqrt(x^2 + 1)/sqrt(x^2 + 2)`  ...[Using equations (i) and (iii)]

∴ sin [cot–1 (cos (tan–1 x))] = `sqrt((x^2 + 1)/(x^2 + 2))` 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×