Advertisements
Advertisements
प्रश्न
Find the principal value of the following:
tan-1 (-1)
उत्तर
tan-1 (-1) = y
(-1) = tan y where `(-pi)/2 <= y <= pi/2`
(or) tan y = – 1
tan y = tan`(- pi/4) (because tan pi/4 = 1)`
∴ y = `- pi/4 [because tan(- pi/4) = - tan(pi/4) = - 1]`
∴ The principal value of tan-1 (-1) is `- pi/4`.
APPEARS IN
संबंधित प्रश्न
Find the principal value of `cos^(-1) (-1/sqrt2)`
If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
`sin[π/3 - sin^-1 (-1/2)]` is equal to:
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is