Advertisements
Advertisements
प्रश्न
Prove that:
2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`
उत्तर
Let tan-1 x = θ
x = tan θ
sin 2θ = `(2 tan θ)/(1 + tan^2 θ) = "2x"/(1 + x^2)`
2θ = `sin^-1 ("2x"/(1 + x^2))`
∴ 2 tan-1 x = `sin^-1 ("2x"/(1 + x^2))` = RHS
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Prove the following:
`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`
Find the principal value of `tan^-1 (sqrt(3))`
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
`sin^2(sin^-1 1/2) + tan^2 (sec^-1 2) + cot^2(cosec^-1 4)` = ______.
The domain of the function y = sin–1 (– x2) is ______.
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
3 tan-1 a is equal to ____________.
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.