Advertisements
Advertisements
प्रश्न
The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.
पर्याय
No solution
Unique solution
Infinite number of solutions
Two solutions
उत्तर
The equation tan–1x – cot–1x = `(1/sqrt(3))` has unique solution.
Explanation:
We have tan–1x – cot–1x = `pi/6` and tan–1x + cot–1x = `pi/2`
Adding them, we get 2tan–1x = `(2pi)/3`
⇒ tan–1x = `pi/3`
i.e., x = `sqrt(3)`.
APPEARS IN
संबंधित प्रश्न
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Find the principal value of `cot^(-1) (sqrt3)`
Find the principal value of `sin^-1(1/sqrt2)`
Evaluate the following:
`cot^-1{2cos(sin^-1 sqrt3/2)}`
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`
Find the principal value of the following: `sin^-1 (1/2)`
Evaluate the following:
`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
In ΔABC, prove the following:
`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`
Find the principal solutions of the following equation:
sin 2θ = `− 1/(sqrt2)`
The principal value of cos−1`(-1/2)` is ______
Evaluate:
`sin[cos^-1 (3/5)]`
Find the principal value of the following:
`sin^-1 (- 1/2)`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______
sin[3 sin-1 (0.4)] = ______.
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
`tan[2tan^-1 (1/3) - pi/4]` = ______.
The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
What is the value of `sin^-1(sin (3pi)/4)`?
`2tan^-1 (cos x) = tan^-1 (2"cosec" x)`, then 'x' will be equal to
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)