मराठी

The equation tan–1x – cot–1x = (13) has ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.

पर्याय

  • No solution

  • Unique solution

  • Infinite number of solutions

  • Two solutions

MCQ
रिकाम्या जागा भरा

उत्तर

The equation tan–1x – cot–1x = `(1/sqrt(3))` has unique solution.

Explanation:

We have tan–1x – cot–1x = `pi/6` and tan–1x + cot–1x = `pi/2`

Adding them, we get 2tan–1x = `(2pi)/3`

⇒ tan–1x = `pi/3`

i.e., x = `sqrt(3)`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Inverse Trigonometric Functions - Solved Examples [पृष्ठ ३४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 2 Inverse Trigonometric Functions
Solved Examples | Q 39 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Show that `2sin^-1(3/5) = tan^-1(24/7)`


Find the principal value of `cot^(-1) (sqrt3)`


Find the principal value of `sin^-1(1/sqrt2)`


Evaluate the following:

`cot^-1{2cos(sin^-1  sqrt3/2)}`


Prove that:
cot−1 7 + cot​−1 8 + cot​−1 18 = cot​−1 3 .


In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`


Find the principal value of the following: `sin^-1 (1/2)`


Evaluate the following:

`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`


Prove the following:

`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).


In ΔABC, prove the following:

`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`


Find the principal solutions of the following equation:

sin 2θ = `− 1/(sqrt2)`


The principal value of cos−1`(-1/2)` is ______


Evaluate:

`sin[cos^-1 (3/5)]`


Find the principal value of the following:

`sin^-1 (- 1/2)`


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.


In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______


sin[3 sin-1 (0.4)] = ______.


The value of 2 `cot^-1  1/2 - cot^-1  4/3` is ______ 


`tan[2tan^-1 (1/3) - pi/4]` = ______.


The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.


Solve the following equation `cos(tan^-1x) = sin(cot^-1  3/4)`


`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.


If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is 


What is the value of `sin^-1(sin  (3pi)/4)`?


`2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`, then 'x' will be equal to


If `sin(sin^-1  1/5 + cos^-1 x) = 1`, the what will be the value of x?


If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.


Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×