Advertisements
Advertisements
प्रश्न
Find the principal value of `cot^(-1) (sqrt3)`
उत्तर
Let `cot^(-1)(sqrt3) = y` Then `cot y = sqrt3 = cot (pi/6)`
We know that the range of the principal value branch of cot−1 is (0,π)
`"Then"cot (pi/6) = sqrt3`
Where `pi/6 ∈ (0, pi)`
Therefore, the principal value of `cot^(-1) (sqrt3) " is " pi/6.`
APPEARS IN
संबंधित प्रश्न
If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `
Show that:
`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`
Find the principal value of `sec^(-1) (2/sqrt(3))`
Find the value of the following:
If sin−1 x = y, then
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
`sin^-1 1/2-2sin^-1 1/sqrt2`
Find the set of values of `cosec^-1(sqrt3/2)`
Evaluate the following:
`cot^-1 1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.
Find the principal value of the following: `sin^-1 (1/2)`
Find the principal value of the following: cos- 1`(-1/2)`
Evaluate the following:
`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
Find the principal solutions of the following equation:
tan 5θ = -1
Prove that cot−1(7) + 2 cot−1(3) = `pi/4`
Evaluate:
`cos[tan^-1 (3/4)]`
Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
`sin[π/3 - sin^-1 (-1/2)]` is equal to:
The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is
If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to
What is the value of `sin^-1(sin (3pi)/4)`?
Find the principal value of `tan^-1 (sqrt(3))`
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______.
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.
Prove that:
tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1
Solve for x:
5tan–1x + 3cot–1x = 2π