हिंदी

The equation tan–1x – cot–1x = (13) has ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.

विकल्प

  • No solution

  • Unique solution

  • Infinite number of solutions

  • Two solutions

MCQ
रिक्त स्थान भरें

उत्तर

The equation tan–1x – cot–1x = `(1/sqrt(3))` has unique solution.

Explanation:

We have tan–1x – cot–1x = `pi/6` and tan–1x + cot–1x = `pi/2`

Adding them, we get 2tan–1x = `(2pi)/3`

⇒ tan–1x = `pi/3`

i.e., x = `sqrt(3)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Solved Examples [पृष्ठ ३४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Solved Examples | Q 39 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the principal value of tan−1 (−1)


`sin^-1  1/2-2sin^-1  1/sqrt2`


Find the domain of the following function:

`f(x) = sin^-1x + sinx`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`


In ΔABC prove that `sin  "A"/(2). sin  "B"/(2). sin  "C"/(2) = ["A(ΔABC)"]^2/"abcs"`


Evaluate the following:

`cos^-1(1/2) + 2sin^-1(1/2)`


Prove the following: 

`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`


Prove the following:

`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`


The principal value of sin−1`(1/2)` is ______


`tan^-1(tan  (7pi)/6)` = ______


Evaluate:

`sin[cos^-1 (3/5)]`


Prove that cot−1(7) + 2 cot−1(3) = `pi/4`


Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`


Find the principal value of the following:

cosec-1 (2)


Evaluate: sin`[1/2 cos^-1 (4/5)]`


Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.


`sin^2(sin^-1  1/2) + tan^2 (sec^-1  2) + cot^2(cosec^-1  4)` = ______.


If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.


If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______ 


All trigonometric functions have inverse over their respective domains.


`"sin"^2 25° +  "sin"^2 65°` is equal to ____________.


If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.


The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.


`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.


`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.


If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to


What is the value of `sin^-1(sin  (3pi)/4)`?


The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.


`sin[π/3 + sin^-1 (1/2)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×