Advertisements
Advertisements
प्रश्न
Find the principal value of the following: tan- 1( - √3)
उत्तर
The principal value branch of tan-1x is `(- π/2, π/2)`.
Let tan- 1(- √3) = α, where `(-π)/(2) ≤ α ≤ π/(2)`
∴ tan α = - √3 = - tan `pi/(3)`
∴ tan α = `tan(- pi/3)` ...[ ∵ tan(– θ) = – tan θ]
∴ α = `- pi/(3) ...[∵ - pi/2 < (-pi)/3 < pi/2 ]`
∴ the principal value of tan- 1( - √3) is `-pi/(3)`.
APPEARS IN
संबंधित प्रश्न
If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `
Find the principal value of cosec−1 (2)
Find the principal value of `sec^(-1) (2/sqrt(3))`
Find the principal value of `cos^(-1) (-1/sqrt2)`
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Find the value of the following:
`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
Find the value of the following:
If sin−1 x = y, then
Find the value of the following:
`cos^(-1) (cos (13pi)/6)`
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
Find the domain of the following function:
`f(x)sin^-1sqrt(x^2-1)`
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
Evaluate the following:
`cot^-1 1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`
Evaluate the following:
`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
Find the principal value of the following: tan-1(– 1)
Find the principal value of the following: cos- 1`(-1/2)`
Evaluate the following:
`cos^-1(1/2) + 2sin^-1(1/2)`
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
Prove the following:
`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
In ΔABC, prove the following:
`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`
Find the principal solutions of the following equation:
sin 2θ = `− 1/(sqrt2)`
Find the principal solutions of the following equation:
cot 2θ = 0.
sin−1x − cos−1x = `pi/6`, then x = ______
The principal value of sin−1`(1/2)` is ______
Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`
Evaluate:
`sin[cos^-1 (3/5)]`
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Prove that:
`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`
Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`
Evaluate:
`cos[tan^-1 (3/4)]`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
Find the principal value of `cos^-1 sqrt(3)/2`
Find the principal value of cosec–1(– 1)
Find the principal value of `sec^-1 (- sqrt(2))`
Find the principal value of `tan^-1 (sqrt(3))`
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
Which of the following function has period 2?
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
The principal value of `tan^{-1(sqrt3)}` is ______
`sin^2(sin^-1 1/2) + tan^2 (sec^-1 2) + cot^2(cosec^-1 4)` = ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
Prove that `cot(pi/4 - 2cot^-1 3)` = 7
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
`"sin" 265° - "cos" 265°` is ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
Which of the following functions is inverse of itself?
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to
Find the value, if sin–1x = y, then `->`:-
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
what is the value of `cos^-1 (cos (13pi)/6)`
Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to
Find the principal value of `cot^-1 ((-1)/sqrt(3))`
Prove that:
tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1
If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.