Advertisements
Advertisements
प्रश्न
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
उत्तर
Let `tan^-1(sqrt(3)) = α, "where" (-pi)/(2) < α < pi/(2)`
∴ tan α = √3 = tan `pi/(3)`
∴ α = `pi/(3) ...[∵ (-pi)/(2) < pi/(3) < pi/(2)]`
∴ `tan^-1(√3) = pi/(3)` ...(1)
Let sec-1(– 2) = β, where 0 ≤ β ≤ π, β ≠ `pi/(2)`
∴ sec β = – 2 = `- sec (pi)/(3)`
∴ sec β = `sec(pi - pi/3)` ...[∵ sec(π – θ) = – secθ]
∴ sec β = `sec (2pi)/(3)`
∴ β = `(2pi)/(3) ...[∵ 0 ≤ (2pi)/(3) ≤ pi]`
∴ sec– 1(– 2) = `(2pi)/(3)` ...(2)
∴ `tan^-1(√3) - sec^-1(-2)`
= `pi/(3) - (2pi)/(3)` ...[By (1) and (2)]
= `-(pi)/(3)`.
APPEARS IN
संबंधित प्रश्न
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Find the principal values of `sin^(-1) (-1/2)`
Find the principal value of `tan^(-1) (-sqrt3)`
Find the principal value of `cos^(-1) (-1/2)`
Find the principal value of `sec^(-1) (2/sqrt(3))`
Find the principal value of `sin^-1(1/sqrt2)`
`sin^-1{cos(sin^-1 sqrt3/2)}`
Find the domain of the following function:
`f(x)=sin^-1x^2`
Find the domain of the following function:
`f(x)sin^-1sqrt(x^2-1)`
If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2
Evaluate the following:
`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
Find the set of values of `cosec^-1(sqrt3/2)`
Find the domain of `f(x)=cotx+cot^-1x`
Evaluate the following:
`cot^-1{2cos(sin^-1 sqrt3/2)}`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
Find the principal value of the following: `sin^-1 (1/2)`
Find the principal value of the following: sin-1 `(1/sqrt(2))`
Evaluate the following:
`cos^-1(1/2) + 2sin^-1(1/2)`
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
Find the principal solutions of the following equation:
tan 5θ = -1
Find the principal solutions of the following equation:
cot 2θ = 0.
sin−1x − cos−1x = `pi/6`, then x = ______
If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Find the principal value of `cos^-1 sqrt(3)/2`
Find the principal value of `sec^-1 (- sqrt(2))`
Find the principal value of `tan^-1 (sqrt(3))`
The principle solutions of equation tan θ = -1 are ______
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
sin[3 sin-1 (0.4)] = ______.
Which of the following function has period 2?
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______
If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
The domain of the function defined by f(x) = sin–1x + cosx is ______.
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
Show that `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
`"cos" 2 theta` is not equal to ____________.
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
The range of sin-1 x + cos-1 x + tan-1 x is ____________.
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
Domain and Rariges of cos–1 is:-
What is the principal value of cosec–1(2).
Find the value, if sin–1x = y, then `->`:-
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.
If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.
If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.