Advertisements
Advertisements
Question
Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`
Solution
LHS = `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n))`
`= tan^-1 ((m/n - (m-n)/(m+n))/(1 + (m/n)((m-n)/(m+n))))`
`= tan^-1 (((m(m + n) - n(m - n))/(n(m+n)))/((n(m+n)+m(m-n))/(n(m+n))))`
`= tan^-1 ((m^2 + mn - nm + n^2)/(nm + n^2 + m^2 - mn))`
`= tan^-1 ((m^2 + n^2)/(m^2 + n^2))`
`= tan^-1 (1) = pi/4`
APPEARS IN
RELATED QUESTIONS
Find the principal value of `cos^(-1) (sqrt3/2)`
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
Find the principal solutions of the following equation:
tan 5θ = -1
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.
`"sin"^2 25° + "sin"^2 65°` is equal to ____________.
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
If f'(x) = x–1, then find f(x)
Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.