English

If tan−1x + tan−1y + tan−1z = π, then show that 1xy+1yz+1zx = 1 - Mathematics and Statistics

Advertisements
Advertisements

Question

If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1

Sum

Solution

tan−1x + tan−1y + tan−1z = π

∴ tan−1x + tan−1y = π − tan−1

∴ `tan^-1 ((x + y)/(1 - xy))` = π − tan−1

∴ `(x + y)/(1 - xy)` = tan(π − tan−1z) 

∴ `(x + y)/(1 - xy)` = −tan(tan−1z) 

∴ `(x + y)/(1 - xy)` = − z

∴ x + y = −z + xyz

∴ x + y + z = xyz

∴ `1/(yz) + 1/(xz) + 1/(xy)` = 1, i.e., `1/(xy) + 1/(yz) + 1/(zx)` = 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 1.3: Trigonometric Functions - Short Answers II

RELATED QUESTIONS

Find the principal value of cosec−1 (2)


Find the principal value of `cot^(-1) (sqrt3)`


Find the value of the following:

`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`


Find the value of the following:

If sin−1 x = y, then


`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.


Find the value of the following:

`tan^(-1) (tan  (7x)/6)`


Prove that:

`tan^-1  ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`

[Hint: put x =  cos 2θ]


`sin^-1  1/2-2sin^-1  1/sqrt2`


`sin^-1{cos(sin^-1  sqrt3/2)}`


Find the domain of the following function:

`f(x) = sin^-1x + sinx`


Find the domain of the following function:

`f(x)=sin^-1x+sin^-1 2x`


Evaluate the following:

`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`


Prove that:
cot−1 7 + cot​−1 8 + cot​−1 18 = cot​−1 3 .


Evaluate: tan `[ 2 tan^-1  (1)/(2) – cot^-1 3]`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.


Find the principal value of the following: cosec- 1(2)


Find the principal value of the following: tan-1(– 1)


Evaluate the following:

`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`


Prove the following:

`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`


Prove the following: 

`2tan^-1(1/3) = tan^-1(3/4)`


Prove the following:

`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`


Find the principal solutions of the following equation:

sin 2θ = `− 1/(sqrt2)`


Find the principal solutions of the following equation:
tan 5θ = -1


The principal value of cos−1`(-1/2)` is ______


If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______


Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`


Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1


Find the principal value of the following:

`sin^-1 (- 1/2)`


Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`


Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`


Find the principal value of `cos^-1  sqrt(3)/2`


Find the principal value of cosec–1(– 1)


The value of cot `(tan^-1 2x + cot^-1 2x)` is ______ 


`sin^-1x + sin^-1  1/x + cos^-1x + cos^-1  1/x` = ______


lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______ 


In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______


The principle solutions of equation tan θ = -1 are ______ 


If `sin^-1(x/13) + cosec^-1(13/12) = pi/2`, then the value of x is ______


In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.


Which of the following function has period 2?


The principal value of `tan^{-1(sqrt3)}` is ______  


If sin `(sin^-1  1/3 + cos^-1 x) = 1`, then the value of x is ______.


The value of cot (- 1110°) is equal to ______.


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______ 


The domain of the function defined by f(x) = sin–1x + cosx is ______.


Prove that `cot(pi/4 - 2cot^-1 3)` = 7


If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.


Prove that `tan^-1  1/4 + tan^-1  2/9 = sin^-1  1/sqrt(5)`


All trigonometric functions have inverse over their respective domains.


`"cos"  2 theta` is not equal to ____________.


When `"x" = "x"/2`, then tan x is ____________.


If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.


If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.


`"sin"^-1 (1/sqrt2)`


If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.


If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.


`"sin"^-1 (1 - "x") - 2  "sin"^-1  "x" = pi/2`


The range of sin-1 x + cos-1 x + tan-1 x is ____________.


`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


`sin[π/3 - sin^-1 (-1/2)]` is equal to:


If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is 


Which of the following functions is inverse of itself?


sin 6θ + sin 4θ + sin 2θ = 0, then θ =


The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is


Find the value, if sin–1x = y, then `->`:-


Values of tan–1 – sec–1(–2) is equal to


`sin(tan^-1x), |x| < 1` is equal to


`2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`, then 'x' will be equal to


what is the value of `cos^-1 (cos  (13pi)/6)`


What is the values of `cos^-1 (cos  (7pi)/6)`


If `sin(sin^-1  1/5 + cos^-1 x) = 1`, the what will be the value of x?


`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______. 


If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.


cos–1(cos10) is equal to ______.


Number of values of x which lie in [0, 2π] and satisfy the equation

`(cos  x/4 - 2sinx) sinx + (1 + sin  x/4 - 2cosx)cosx` = 0


If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.


If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.


The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.


Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.


`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.


If y = `tan^-1  (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.


If cos–1 x > sin–1 x, then ______.


If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`


`sin[π/3 + sin^-1 (1/2)]` is equal to ______.


If sin–1x – cos–1x = `π/6`, then x = ______.


Prove that:

tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×