Advertisements
Advertisements
Question
Prove that `cot(pi/4 - 2cot^-1 3)` = 7
Solution
L.H.S. `cot(pi/4 - 2cot^-1 3)`
= `cot[tan^-1(1) - 2 tan^-1 1/3]` ......`[because cot^-1x = tan^-1 1/x]`
= `cot[tan^-1(1) - tan^-1 (2 xx 1/3)/(1 - (1/3)^2)]` ......`[because 2tan^-1x = tan^-1 (2x)/(1 - x^2)]`
= `cot[tan^-1(1) - tan^-1 (2/3)/(8/9)]`
= `cot[tan^-1(1) - tan^-1 3/4]`
= `cot[tan^-1 ((1 - 3/4)/(1 + 1 xx 3/4))]`
= `cot[tan^-1 ((1/4)/(7/4))]`
= `cot[tan^-1 1/7]` ......`[because tan^-1 1/x = cot^-1x]`
= `cot[cot^-1 (7)]`
= 7 R.H.S
Hence Proved.
APPEARS IN
RELATED QUESTIONS
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
Find the domain of `f(x)=cotx+cot^-1x`
Evaluate the following:
`cot^-1 1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
Find the principal value of the following: cos- 1`(-1/2)`
Prove the following:
`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`
`tan^-1(tan (7pi)/6)` = ______
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Find the principal value of cosec–1(– 1)
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
If `sin^-1(x/13) + cosec^-1(13/12) = pi/2`, then the value of x is ______
If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______
If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
The domain of the function y = sin–1 (– x2) is ______.
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.
`2 "tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
The range of sin-1 x + cos-1 x + tan-1 x is ____________.
3 tan-1 a is equal to ____________.
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is
`sin(tan^-1x), |x| < 1` is equal to
Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`