Advertisements
Advertisements
Question
Find the principal value of `sin^-1 1/sqrt(2)`
Solution
Let y = `sin^-1 1/sqrt(2)`
Where `- pi/2 ≤ y ≤ pi/2`
sin y = `1/sqrt(2)`
= `sin (pi/4)`
y = `pi/4`
∴ The principal value of `sin^-1 1/sqrt(2) = pi/4`
APPEARS IN
RELATED QUESTIONS
Find the principal value of tan−1 (−1)
Find the principal value of `cot^(-1) (sqrt3)`
Find the principal value of `sin^-1(1/sqrt2)`
Find the domain of `f(x)=cotx+cot^-1x`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
Find the principal value of the following:
tan-1 (-1)
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______
In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.
`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______
When `"x" = "x"/2`, then tan x is ____________.
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to
Find the principal value of `tan^-1 (sqrt(3))`
Find the value of `tan^-1(x/y) + tan^-1((y - x)/(y + x))`