Advertisements
Advertisements
प्रश्न
Find the principal value of `sec^-1 (- sqrt(2))`
उत्तर
Let y = `sec^-1 (- sqrt(2))`
Where 0 ≤ y ≤ π
sec y = `- sqrt(2)`
`y +- pi/2`
`1/sec y = - 1/sqrt(2)`
cos y = `- 1/sqrt(2)`
∴ The principal value of `sec^-1 (- sqrt(2)) = (3pi)/4`
APPEARS IN
संबंधित प्रश्न
Find the principal value of `sec^(-1) (2/sqrt(3))`
Find the value of the following:
`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
Find the value of the following:
`cos^(-1) (cos (13pi)/6)`
Find the domain of the following function:
`f(x)sin^-1sqrt(x^2-1)`
Find the principal solutions of the following equation:
cot 2θ = 0.
Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`
Evaluate:
`cos[tan^-1 (3/4)]`
The principal value of `tan^{-1(sqrt3)}` is ______
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
When `"x" = "x"/2`, then tan x is ____________.
`"sin"^2 25° + "sin"^2 65°` is equal to ____________.
If `"cos"^-1 "x + sin"^-1 "x" = pi`, then the value of x is ____________.
`"sin" ["cot"^-1 {"cos" ("tan"^-1 "x")}] =` ____________.
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is
Find the principal value of `cot^-1 ((-1)/sqrt(3))`
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.