Advertisements
Advertisements
प्रश्न
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
उत्तर
L.H.S. = `tan^-1 1/4 + tan^-1 2/9`
= `tan^-1 (1/4 + 2/9)/(1 - 1/4 * 2/9)`
= `tan^-1 (9 + 8)/(36 - 2)`
= `tan^-1 1/2`
= `sin^-1 1/sqrt(5)`.
APPEARS IN
संबंधित प्रश्न
Find the principal value of `cos^(-1) (-1/sqrt2)`
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
Evaluate the following:
`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
Evaluate the following:
`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`
Find the principal value of the following: sin-1 `(1/sqrt(2))`
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1
Prove that:
2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______
The principal value of `tan^{-1(sqrt3)}` is ______
If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
`cos^-1 4/5 + tan^-1 3/5` = ______.
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
Show that `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
`"sin"^-1 (1/sqrt2)`
If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to
What is the value of `sin^-1(sin (3pi)/4)`?
If f'(x) = x–1, then find f(x)
`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______.
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
cos–1(cos10) is equal to ______.
If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.