Advertisements
Advertisements
प्रश्न
Find the value of `4tan^-1 1/5 - tan^-1 1/239`
उत्तर
`4tan^-1 1/5 - tan^-1 1/239`
= `2(2tan^-1 1/5) - tan^-1 1/239`
= `2tan^-1 (2/5)/(1 - (1/5)^2) - tan^-1 1/239` .....`(because 2tan^-1x = tan^-1 (2x)/(1 - x^2))`
= `2tan^-1 (2/5)/(24/25) - tan^-1 1/239`
= `2tan^-1 5/12 - tan^-1 1/239`
= `2tan^-1 (2/5)/(1 - (1/5)^2) - tan^-1 1/239` .....`(because 2tan^-1x = tan^-1 (2x)/(1 - x^2))`
= `2tan^-1 (2/5)/(24/25) - tan^-1 1/239`
= `2tan^-1 5/12 - tan^-1 1/239`
= `tan^-1 (2*5/12)/(1 - (5/12)^2) - tan^-1 1/239` ......`(because 2tan^-1x = tan^-1 (2x)/(1 - x^2))`
= `tan^-1 (144 xx 5)/(119 xx 6) - tan^-1 1/239`
= `tan^-1 120/119 - tan^-1 1/239`
= `tan^-1 (120/119 - 1/239)/(1 + 120/119 * 1/239)` ......`(because tan^-1x - tan^-1y = tan^-1 (x - y)/(1 + xy))`
= `tan^-1 (120 xx 239 - 119)/(119 xx 239 + 120)`
= `tan^-1 (28680 - 119)/(28441 + 120)`
= `tan^-1 28561/28561`
= `tan^-1 1 = pi/4`
APPEARS IN
संबंधित प्रश्न
Find the principal value of the following:
`tan^-1(cos pi/2)`
Find the principal value of the following:
`sec^-1(2sin (3pi)/4)`
For the principal value, evaluate the following:
`tan^-1sqrt3-sec^-1(-2)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)-2sec^-1(2tan pi/6)`
Find the principal value of the following:
`cosec^-1(2cos (2pi)/3)`
For the principal value, evaluate the following:
`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`
For the principal value, evaluate the following:
`cosec^-1(2tan (11pi)/6)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
if sec-1 x = cosec-1 v. show that `1/x^2 + 1/y^2 = 1`
If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`
Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.
Find value of tan (cos–1x) and hence evaluate `tan(cos^-1 8/17)`
Find the value of `sin[2cot^-1 ((-5)/12)]`
One branch of cos–1 other than the principal value branch corresponds to ______.
The domain of sin–1 2x is ______.
The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.
If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.
Find the value of `tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)`
Find the value of `tan^-1 (tan (2pi)/3)`
Which of the following is the principal value branch of cosec–1x?
The value of `sin^-1 [cos((33pi)/5)]` is ______.
The domain of the function cos–1(2x – 1) is ______.
The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.
The principal value of `cos^-1 (- 1/2)` is ______.
The set of values of `sec^-1 (1/2)` is ______.
The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.
`2 "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.
If `"tan"^-1 "x" + "tan"^-1"y + tan"^-1 "z" = pi/2, "x,y,x" > 0,` then the value of xy+yz+zx is ____________.