हिंदी

Find the value of 4tan-1 15-tan-1 1239 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of `4tan^-1  1/5 - tan^-1  1/239`

योग

उत्तर

`4tan^-1  1/5 - tan^-1  1/239`

= `2(2tan^-1  1/5) - tan^-1  1/239`

= `2tan^-1  (2/5)/(1 - (1/5)^2) - tan^-1  1/239`  .....`(because 2tan^-1x = tan^-1  (2x)/(1 - x^2))`

= `2tan^-1  (2/5)/(24/25) - tan^-1  1/239`

= `2tan^-1  5/12 - tan^-1  1/239`

= `2tan^-1  (2/5)/(1 - (1/5)^2) - tan^-1  1/239` .....`(because 2tan^-1x = tan^-1  (2x)/(1 - x^2))`

= `2tan^-1  (2/5)/(24/25) - tan^-1  1/239`

= `2tan^-1  5/12 - tan^-1  1/239`

= `tan^-1  (2*5/12)/(1 - (5/12)^2) - tan^-1  1/239`  ......`(because 2tan^-1x = tan^-1  (2x)/(1 - x^2))`

= `tan^-1  (144 xx 5)/(119 xx 6) - tan^-1  1/239`

= `tan^-1  120/119 - tan^-1  1/239`

= `tan^-1  (120/119 - 1/239)/(1 + 120/119 * 1/239)`  ......`(because tan^-1x - tan^-1y = tan^-1  (x - y)/(1 + xy))`

= `tan^-1  (120 xx 239 - 119)/(119 xx 239 + 120)`

= `tan^-1  (28680 - 119)/(28441 + 120)`

= `tan^-1  28561/28561`

= `tan^-1 1 = pi/4`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Exercise [पृष्ठ ३६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Exercise | Q 17 | पृष्ठ ३६

संबंधित प्रश्न

Find the principal value of the following:

`tan^-1(cos  pi/2)`


Find the principal value of the following:

`sec^-1(2sin  (3pi)/4)`


For the principal value, evaluate the following:

`tan^-1sqrt3-sec^-1(-2)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)-2sec^-1(2tan  pi/6)`


​Find the principal value of the following:

`cosec^-1(2cos  (2pi)/3)`


For the principal value, evaluate the following:

`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`


For the principal value, evaluate the following:

`cosec^-1(2tan  (11pi)/6)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


if sec-1  x = cosec-1  v. show that `1/x^2 + 1/y^2 = 1`


If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`  


Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.


Find value of tan (cos–1x) and hence evaluate `tan(cos^-1  8/17)`


Find the value of `sin[2cot^-1 ((-5)/12)]`


One branch of cos–1 other than the principal value branch corresponds to ______.


The domain of sin–1 2x is ______.


The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.


If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.


Find the value of `tan^-1 (tan  (5pi)/6) +cos^-1(cos  (13pi)/6)`


Find the value of `tan^-1 (tan  (2pi)/3)`


Which of the following is the principal value branch of cosec–1x?


The value of `sin^-1 [cos((33pi)/5)]` is ______.


The domain of the function cos–1(2x – 1) is ______.


The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.


The principal value of `cos^-1 (- 1/2)` is ______.


The set of values of `sec^-1 (1/2)` is ______.


The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.


`2  "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.


If `"tan"^-1 "x" + "tan"^-1"y + tan"^-1 "z" = pi/2, "x,y,x" > 0,` then the value of xy+yz+zx is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×