Advertisements
Advertisements
प्रश्न
The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.
विकल्प
`(5pi^2)/4` and `pi^2/8`
`pi/2` and `(-pi)/2`
`pi^2/4` ad `(-pi^2)/4`
`pi^2/4` and 0
उत्तर
The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively `(5pi^2)/4` and `pi^2/8`.
Explanation:
We have (sin–1x)2 + (cos–1x)2
= (sin–1x + cos–1x)2 – 2 sin–1x cos–1x
= `pi^2/4 - 2sin^1x (pi/2 - sin^-1x)`
= `pi^2/4 - pi sin^-1x + 2(sin^-1x)^2`
= `2[(sin^-1x)^2 - pi/2 sin^-1x + pi^2/8]`
= `2[(sin^-1x - pi/4)^2 + pi^2/16]`
Thus, the least value is `2(pi^2/16)`
i.e. `pi^2/8` and the Greatest value is `2[((-pi)/2 - pi/4)^2 + pi^2/16]`
i.e. `(5pi^2)/4`.
APPEARS IN
संबंधित प्रश्न
Solve `3tan^(-1)x + cot^(-1) x = pi`
Find the principal value of the following:
`sin^-1((sqrt3+1)/(2sqrt2))`
Find the principal value of the following:
`sin^-1(cos (3pi)/4)`
Find the principal value of the following:
`tan^-1(-1/sqrt3)`
For the principal value, evaluate of the following:
`tan^-1(-1)+cos^-1(-1/sqrt2)`
Find the principal value of the following:
`\text(cosec)^-1(2/sqrt3)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`
For the principal value, evaluate the following:
`cosec^-1(2tan (11pi)/6)`
Find the principal value of the following:
`cot^-1(-sqrt3)`
Find the principal value of the following:
`cot^-1(sqrt3)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
if sec-1 x = cosec-1 v. show that `1/x^2 + 1/y^2 = 1`
Find the value of `tan^-1 (tan (9pi)/8)`.
Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.
Find value of tan (cos–1x) and hence evaluate `tan(cos^-1 8/17)`
The principal value branch of sec–1 is ______.
The value of `sin^-1 (cos((43pi)/5))` is ______.
The value of sin (2 sin–1 (.6)) is ______.
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.
The set of values of `sec^-1 (1/2)` is ______.
The value of `cos^-1 (cos (14pi)/3)` is ______.
The value of the expression (cos–1x)2 is equal to sec2x.
The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.
The minimum value of n for which `tan^-1 "n"/pi > pi/4`, n ∈ N, is valid is 5.
If `5 sin theta = 3 "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.
`2 "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
If `"tan"^-1 "x" + "tan"^-1"y + tan"^-1 "z" = pi/2, "x,y,x" > 0,` then the value of xy+yz+zx is ____________.
What is the principal value of `cot^-1 ((-1)/sqrt(3))`?