हिंदी

The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.

विकल्प

  • `(5pi^2)/4` and `pi^2/8`

  • `pi/2` and `(-pi)/2`

  • `pi^2/4` ad `(-pi^2)/4`

  • `pi^2/4` and 0

MCQ
रिक्त स्थान भरें

उत्तर

The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively `(5pi^2)/4` and `pi^2/8`.

Explanation:

We have (sin–1x)2 + (cos–1x)2

= (sin–1x + cos–1x)2 – 2 sin–1x cos–1x

=  `pi^2/4 - 2sin^1x (pi/2 - sin^-1x)`

= `pi^2/4 - pi sin^-1x + 2(sin^-1x)^2`

= `2[(sin^-1x)^2 - pi/2 sin^-1x + pi^2/8]`

= `2[(sin^-1x - pi/4)^2 + pi^2/16]`

Thus, the least value is `2(pi^2/16)`

i.e. `pi^2/8` and the Greatest value is `2[((-pi)/2 - pi/4)^2 + pi^2/16]`

i.e. `(5pi^2)/4`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Solved Examples [पृष्ठ ३१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Solved Examples | Q 30 | पृष्ठ ३१

संबंधित प्रश्न

Solve `3tan^(-1)x + cot^(-1) x = pi`


Find the principal value of the following:

`sin^-1((sqrt3+1)/(2sqrt2))`


Find the principal value of the following:

`sin^-1(cos  (3pi)/4)`


Find the principal value of the following:

`tan^-1(-1/sqrt3)`


For the principal value, evaluate of the following:

`tan^-1(-1)+cos^-1(-1/sqrt2)`


​Find the principal value of the following:

`\text(cosec)^-1(2/sqrt3)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`


For the principal value, evaluate the following:

`cosec^-1(2tan  (11pi)/6)`


Find the principal value of the following:

`cot^-1(-sqrt3)`


Find the principal value of the following:

`cot^-1(sqrt3)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


if sec-1  x = cosec-1  v. show that `1/x^2 + 1/y^2 = 1`


Find the value of `tan^-1 (tan  (9pi)/8)`.


Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.


Find value of tan (cos–1x) and hence evaluate `tan(cos^-1  8/17)`


The principal value branch of sec–1 is ______.


The value of `sin^-1 (cos((43pi)/5))` is ______.


The value of sin (2 sin–1 (.6)) is ______.


Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`


If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.


The set of values of `sec^-1 (1/2)` is ______.


The value of `cos^-1 (cos  (14pi)/3)` is ______.


The value of the expression (cos–1x)2 is equal to sec2x.


The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.


The minimum value of n for which `tan^-1  "n"/pi > pi/4`, n ∈ N, is valid is 5.


If `5 sin theta = 3  "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.


`2  "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.


`"cos" ["tan"^-1 {"sin" ("cot"^-1  "x")}]` is equal to ____________.


If `"tan"^-1 "x" + "tan"^-1"y + tan"^-1 "z" = pi/2, "x,y,x" > 0,` then the value of xy+yz+zx is ____________.


What is the principal value of `cot^-1 ((-1)/sqrt(3))`?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×