Advertisements
Advertisements
प्रश्न
The principal value of `sin^-1 ((-sqrt(3))/2)` is ______.
विकल्प
`- (2pi)/3`
`-pi/3`
`(4pi)/3`
`(5pi)/3`
उत्तर
The principal value of `sin^-1 ((-sqrt(3))/2)` is `-pi/3`.
Explanation:
`sin^-1 ((-sqrt(3))/2) = sin^-1 (- sin pi/3)`
= `- sin^-1 (sin pi/3)`
= `- pi/3`.
APPEARS IN
संबंधित प्रश्न
Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`
Solve `3tan^(-1)x + cot^(-1) x = pi`
if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc
Find the principal value of the following:
`sin^-1(cos (2pi)/3)`
Find the principal value of the following:
`sin^-1(cos (3pi)/4)`
For the principal value, evaluate of the following:
`tan^-1(-1)+cos^-1(-1/sqrt2)`
Find the principal value of the following:
`sec^-1(2)`
Find the principal value of the following:
`sec^-1(2sin (3pi)/4)`
Find the principal value of the following:
`sec^-1(2tan (3pi)/4)`
Find the principal value of the following:
`cosec^-1(-sqrt2)`
Find the principal value of the following:
`cosec^-1(2cos (2pi)/3)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below
Commodity | A | B | C | D | E | F |
Price in the year 2000 (₹) | 50 | x | 30 | 70 | 116 | 20 |
Price in the year 2010 (₹) | 60 | 24 | y | 80 | 120 | 28 |
Find the principal value of cos–1x, for x = `sqrt(3)/2`.
Find value of tan (cos–1x) and hence evaluate `tan(cos^-1 8/17)`
The principal value of the expression cos–1[cos (– 680°)] is ______.
The value of sin (2 sin–1 (.6)) is ______.
If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.
The value of `tan(cos^-1 3/5 + tan^-1 1/4)` is ______.
The value of tan2 (sec–12) + cot2 (cosec–13) is ______.
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
Find the value of the expression `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))`
Which of the following is the principal value branch of cos–1x?
Which of the following is the principal value branch of cosec–1x?
If `cos(sin^-1 2/5 + cos^-1x)` = 0, then x is equal to ______.
The value of `cos^-1 (cos (3pi)/2)` is equal to ______.
If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.
The principal value of `sin^-1 [cos(sin^-1 1/2)]` is `pi/3`.
If `5 sin theta = 3 "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.