हिंदी

​Find the Principal Value of the Following: `Cosec^-1(-sqrt2)` - Mathematics

Advertisements
Advertisements

प्रश्न

​Find the principal value of the following:

`cosec^-1(-sqrt2)`

उत्तर

Let `cosec^-1(-sqrt2)=y`

Then,

`cosecy=-sqrt2`

We know that the range of the principal value branch is `[-pi/2,pi/2]-{0}`.

Thus,

`cosecy=-sqrt2=cosec(-pi/4)`

`y=-pi/4in [-pi/2,pi/2],y!=0`

Hence, the principal value of `cosec^-1(-sqrt2)   is   -pi/4.`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.05 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.05 | Q 1.1 | पृष्ठ २१

संबंधित प्रश्न

Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`


The principal solution of the equation cot x=`-sqrt 3 ` is


Solve `3tan^(-1)x + cot^(-1) x = pi`


if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc 


Find the principal value of the following:

`sin^-1(-sqrt3/2)`


Find the principal value of the following:

`sin^-1(cos  (2pi)/3)`


Find the principal value of the following:

`sin^-1((sqrt3-1)/(2sqrt2))`


Find the principal value of the following:

`sin^-1((sqrt3+1)/(2sqrt2))`


Find the principal value of the following:

`tan^-1(cos  pi/2)`


Find the principal value of the following:

`sec^-1(-sqrt2)`


​Find the principal value of the following:

cosec-1(-2)


For the principal value, evaluate the following:

`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`


Find the principal value of the following:

`cot^-1(-1/sqrt3)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


Solve for x, if:

tan (cos-1x) = `2/sqrt5`


If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`  


Find the value of `cos^-1(cos  (13pi)/6)`.


Find the value of `tan^-1 (tan  (9pi)/8)`.


Find value of tan (cos–1x) and hence evaluate `tan(cos^-1  8/17)`


Find the value of `sin[2cot^-1 ((-5)/12)]`


Find the value of `sin(2tan^-1  2/3) + cos(tan^-1 sqrt(3))`


Which of the following corresponds to the principal value branch of tan–1?


One branch of cos–1 other than the principal value branch corresponds to ______.


The principal value of the expression cos–1[cos (– 680°)] is ______.


The value of cot (sin–1x) is ______.


The domain of sin–1 2x is ______.


The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.


Let θ = sin–1 (sin (– 600°), then value of θ is ______.


Find the value of `tan^-1 (tan  (5pi)/6) +cos^-1(cos  (13pi)/6)`


Which of the following is the principal value branch of cos–1x?


The value of sin (2 tan–1(0.75)) is equal to ______.


The principal value of `cos^-1 (- 1/2)` is ______.


If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.


The value of the expression (cos–1x)2 is equal to sec2x.


The general solution of the equation `"cot"  theta - "tan"  theta = "sec"  theta` is ____________ where `(n in I).`


`2  "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.


Assertion (A): Maximum value of (cos–1 x)2 is π2.

Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×