हिंदी

The value of cot (sin–1x) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of cot (sin–1x) is ______.

विकल्प

  • `sqrt(1 + x^2)/x`

  • `x/sqrt(1 + x^2)`

  • `1/x`

  • `sqrt(1 - x^2)/x`

MCQ
रिक्त स्थान भरें

उत्तर

The value of cot (sin–1x) is `sqrt(1 - x^2)/x`.

Explanation:

Let sin–1x = θ, then sin θ = x

⇒ cosec θ = `1/x`

⇒ cosec2θ = `1/x^2`

⇒ 1 + cot2θ = `1/x^2`

⇒ cot θ = `sqrt(1 - x^2)/x`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Solved Examples [पृष्ठ २९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Solved Examples | Q 26 | पृष्ठ २९

संबंधित प्रश्न

Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`


Find the principal value of the following:

`tan^-1(1/sqrt3)`


Find the principal value of the following:

`sec^-1(-sqrt2)`


Find the principal value of the following:

`sec^-1(2)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`


For the principal value, evaluate the following:

`sin^-1[cos{2\text(cosec)^-1(-2)}]`


For the principal value, evaluate the following:

`cosec^-1(2tan  (11pi)/6)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


Find the principal value of cos–1x, for x = `sqrt(3)/2`.


Find the value of `sin[2cot^-1 ((-5)/12)]`


Find the value of `sin(2tan^-1  2/3) + cos(tan^-1 sqrt(3))`


The principal value of the expression cos–1[cos (– 680°)] is ______.


The principal value of `sin^-1 ((-sqrt(3))/2)` is ______.


Let θ = sin–1 (sin (– 600°), then value of θ is ______.


The value of tan2 (sec–12) + cot2 (cosec–13) is ______.


Find the value of `tan^-1 (tan  (5pi)/6) +cos^-1(cos  (13pi)/6)`


Find the value of the expression `sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2))`


Which of the following is the principal value branch of cos–1x?


The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.


The value of `sin^-1 (sin  (3pi)/5)` is ______.


The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.


The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.


The general solution of the equation `"cot"  theta - "tan"  theta = "sec"  theta` is ____________ where `(n in I).`


Evaluate `sin^-1 (sin  (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×