Advertisements
Advertisements
प्रश्न
The value of `sin^-1 (sin (3pi)/5)` is ______.
उत्तर
The value of `sin^-1 (sin (3pi)/5)` is `(2pi)/5`.
Explanation:
∵ `- pi/2 ≤ sin x ≤ pi/2`
∴ `sin^1 (sin (3pi)/5) = sin^1 sin(pi - (2pi)/5)`
= `sin^-1 (sin (2pi)/5)`
= `(2pi)/5`
APPEARS IN
संबंधित प्रश्न
Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`
Solve `3tan^(-1)x + cot^(-1) x = pi`
if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc
Find the principal value of the following:
`sin^-1(-sqrt3/2)`
For the principal value, evaluate of the following:
`cos^-1 1/2+2sin^-1 (1/2)`
For the principal value, evaluate of the following:
`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`
For the principal value, evaluate of the following:
`tan^-1{2sin(4cos^-1 sqrt3/2)}`
Find the principal value of the following:
`sec^-1(2tan (3pi)/4)`
Find the principal value of the following:
`cosec^-1(-sqrt2)`
For the principal value, evaluate the following:
`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`
For the principal value, evaluate the following:
`sin^-1[cos{2\text(cosec)^-1(-2)}]`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.
Which of the following corresponds to the principal value branch of tan–1?
The principal value of the expression cos–1[cos (– 680°)] is ______.
The value of cot (sin–1x) is ______.
The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.
The value of sin (2 sin–1 (.6)) is ______.
The value of `tan(cos^-1 3/5 + tan^-1 1/4)` is ______.
The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.
The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.
The principal value of `sin^-1 [cos(sin^-1 1/2)]` is `pi/3`.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.