हिंदी

For the Principal Value, Evaluate of the Following: `Cos^-1 1/2+2sin^-1 (1/2)` - Mathematics

Advertisements
Advertisements

प्रश्न

For the principal value, evaluate of the following:

`cos^-1  1/2+2sin^-1  (1/2)`

उत्तर

`cos^-1(cosx)=x`

`sin^-1(sinx)=x`

`cos^-1  1/2+2sin^-1  (1/2)`

`=cos^-1(cos  pi/3)+2sin^-1(sin  pi/6)`

`=pi/3+2(pi/6)`

`=(2pi)/3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.02 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.02 | Q 5.1 | पृष्ठ १०

संबंधित प्रश्न

The principal solution of `cos^-1(-1/2)` is :


Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`


Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`


Find the principal value of the following:

`sin^-1(-sqrt3/2)`


Find the principal value of the following:

`sin^-1((sqrt3+1)/(2sqrt2))`


For the principal value, evaluate of the following:

`tan^-1(-1)+cos^-1(-1/sqrt2)`


Find the principal value of the following:

`sec^-1(-sqrt2)`


​Find the principal value of the following:

`cosec^-1(2cos  (2pi)/3)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`


For the principal value, evaluate the following:

`sin^-1[cos{2\text(cosec)^-1(-2)}]`


For the principal value, evaluate the following:

`cosec^-1(2tan  (11pi)/6)`


Find the principal value of the following:

`cot^-1(-sqrt3)`


if sec-1  x = cosec-1  v. show that `1/x^2 + 1/y^2 = 1`


Solve for x, if:

tan (cos-1x) = `2/sqrt5`


The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below

Commodity A B C D E F
Price in the year 2000 (₹) 50 x 30 70 116 20
Price in the year 2010 (₹) 60 24 80  120 28

Find the value of `cos^-1(cos  (13pi)/6)`.


Find the value of `sin[2cot^-1 ((-5)/12)]`


The principal value of the expression cos–1[cos (– 680°)] is ______.


The value of cot (sin–1x) is ______.


The domain of sin–1 2x is ______.


If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.


Find the value of `tan^-1 (tan  (5pi)/6) +cos^-1(cos  (13pi)/6)`


Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`


Find the value of the expression `sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2))`


The value of `sin^-1 [cos((33pi)/5)]` is ______.


The domain of the function cos–1(2x – 1) is ______.


If `cos(sin^-1  2/5 + cos^-1x)` = 0, then x is equal to ______.


If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.


The principal value of `tan^-1 sqrt(3)` is ______.


The value of the expression (cos–1x)2 is equal to sec2x.


The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.


If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.


`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.


Which of the following is the principal value branch of `"cos"^-1 "x"`


What is the value of x so that the seven-digit number 8439 × 53 is divisible by 99?


What is the principle value of `sin^-1 (1/sqrt(2))`?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×