हिंदी

The value of the expression (cos–1x)2 is equal to sec2x. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of the expression (cos–1x)2 is equal to sec2x.

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is False.

Explanation:

We know that `cos^-1x = sec^-1 (1/x) ≠ sec x`

So `(cos^-1x)^2 ≠ sec^2x`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Exercise [पृष्ठ ४०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Exercise | Q 50 | पृष्ठ ४०

संबंधित प्रश्न

The principal solution of `cos^-1(-1/2)` is :


Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`


Find the principal value of the following:

`sin^-1(-sqrt3/2)`


Find the principal value of the following:

`sin^-1((sqrt3-1)/(2sqrt2))`


For the principal value, evaluate of the following:

`cos^-1  1/2+2sin^-1  (1/2)`


For the principal value, evaluate of the following:

`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`


For the principal value, evaluate of the following:

`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`


Find the principal value of the following:

`tan^-1(cos  pi/2)`


Find the principal value of the following:

`sec^-1(2sin  (3pi)/4)`


​Find the principal value of the following:

cosec-1(-2)


​Find the principal value of the following:

`\text(cosec)^-1(2/sqrt3)`


For the principal value, evaluate the following:

`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`


Find the principal value of the following:

`cot^-1(-sqrt3)`


Find the principal value of the following:

`cot^-1(tan  (3pi)/4)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


Find the value of `cos^-1(cos  (13pi)/6)`.


Find the value of `tan^-1 (tan  (9pi)/8)`.


Which of the following corresponds to the principal value branch of tan–1?


The domain of the function cos–1(2x – 1) is ______.


If `cos(sin^-1  2/5 + cos^-1x)` = 0, then x is equal to ______.


If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.


The value of `cot[cos^-1 (7/25)]` is ______.


The principal value of `tan^-1 sqrt(3)` is ______.


The value of `cos^-1 (cos  (14pi)/3)` is ______.


The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.


The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.


The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.


The minimum value of n for which `tan^-1  "n"/pi > pi/4`, n ∈ N, is valid is 5.


The principal value of `sin^-1 [cos(sin^-1  1/2)]` is `pi/3`.


Assertion (A): Maximum value of (cos–1 x)2 is π2.

Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×