Advertisements
Advertisements
प्रश्न
The value of `cos^-1 (cos (14pi)/3)` is ______.
उत्तर
The value of `cos^-1 (cos (14pi)/3)` is `(2pi)/3`.
Explanation:
`cos^-1 (cos (14pi)/3) ≠ (14pi)/3` as `(14pi)/3 ∉ [0, pi]`
∴ `cos^-1 (cos (14pi)/3) = cos^-1 cos(4pi + (2pi)/3)`
= `cos^-1 cos (2pi)/3` .....`(because cos(2"n"pi + theta) = cos theta)`
= `(2pi)/3` ......`(because cos^-1 (cos x) = x, x ∈ [0, pi])`
APPEARS IN
संबंधित प्रश्न
Find the principal value of the following:
`sin^-1(cos (2pi)/3)`
Find the principal value of the following:
`sin^-1((sqrt3-1)/(2sqrt2))`
Find the principal value of the following:
`tan^-1(cos pi/2)`
Find the principal value of the following:
`tan^-1(2cos (2pi)/3)`
Find the principal value of the following:
cosec-1(-2)
Find the principal value of the following:
`\text(cosec)^-1(2/sqrt3)`
if sec-1 x = cosec-1 v. show that `1/x^2 + 1/y^2 = 1`
Find the principal value of cos–1x, for x = `sqrt(3)/2`.
Find value of tan (cos–1x) and hence evaluate `tan(cos^-1 8/17)`
The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.
Let θ = sin–1 (sin (– 600°), then value of θ is ______.
The value of `tan(cos^-1 3/5 + tan^-1 1/4)` is ______.
The value of the expression sin [cot–1 (cos (tan–11))] is ______.
Find the value of `tan^-1 (tan (2pi)/3)`
Find the value of `4tan^-1 1/5 - tan^-1 1/239`
The domain of the function cos–1(2x – 1) is ______.
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
The value of `cot[cos^-1 (7/25)]` is ______.
The set of values of `sec^-1 (1/2)` is ______.
The principal value of `tan^-1 sqrt(3)` is ______.
The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.
The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.
`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.