हिंदी

The value of cos-1(cos 14π3) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of `cos^-1 (cos  (14pi)/3)` is ______.

रिक्त स्थान भरें

उत्तर

The value of `cos^-1 (cos  (14pi)/3)` is `(2pi)/3`.

Explanation:

`cos^-1 (cos  (14pi)/3) ≠ (14pi)/3` as `(14pi)/3 ∉ [0, pi]`

∴  `cos^-1 (cos  (14pi)/3) = cos^-1 cos(4pi + (2pi)/3)`

= `cos^-1 cos  (2pi)/3`  .....`(because cos(2"n"pi + theta) = cos theta)`

= `(2pi)/3`   ......`(because cos^-1 (cos x) = x, x ∈ [0, pi])`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Exercise [पृष्ठ ४०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Exercise | Q 43 | पृष्ठ ४०

संबंधित प्रश्न

Find the principal value of the following:

`sin^-1(cos  (2pi)/3)`


Find the principal value of the following:

`sin^-1((sqrt3-1)/(2sqrt2))`


Find the principal value of the following:

`tan^-1(cos  pi/2)`


Find the principal value of the following:

`tan^-1(2cos  (2pi)/3)`


​Find the principal value of the following:

cosec-1(-2)


​Find the principal value of the following:

`\text(cosec)^-1(2/sqrt3)`


if sec-1  x = cosec-1  v. show that `1/x^2 + 1/y^2 = 1`


Find the principal value of cos–1x, for x = `sqrt(3)/2`.


Find value of tan (cos–1x) and hence evaluate `tan(cos^-1  8/17)`


The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.


Let θ = sin–1 (sin (– 600°), then value of θ is ______.


The value of `tan(cos^-1  3/5 + tan^-1  1/4)` is ______.


The value of the expression sin [cot–1 (cos (tan–11))] is ______.


Find the value of `tan^-1 (tan  (2pi)/3)`


Find the value of `4tan^-1  1/5 - tan^-1  1/239`


The domain of the function cos–1(2x – 1) is ______.


The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.


The value of `cot[cos^-1 (7/25)]` is ______.


The set of values of `sec^-1 (1/2)` is ______.


The principal value of `tan^-1 sqrt(3)` is ______.


The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.


The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.


`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×