Advertisements
Advertisements
प्रश्न
Find the principal value of the following:
`tan^-1(cos pi/2)`
उत्तर
Let `tan^-1(cos pi/2)=y`
Then,
`tany=cospi/2`
We know that the range of the principal value branch is `(-pi/2,pi/2)`
Thus,
`tany=cos pi/2=0=tan(0)`
`=>y=0in(-pi/2,pi/2)`
Hence, the principal value of `tan^-1(cos pi/2)` is 0.
APPEARS IN
संबंधित प्रश्न
The principal solution of `cos^-1(-1/2)` is :
Find the principal value of the following:
`sin^-1(-sqrt3/2)`
Find the principal value of the following:
`sin^-1(cos (3pi)/4)`
For the principal value, evaluate of the following:
`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`
For the principal value, evaluate of the following:
`tan^-1{2sin(4cos^-1 sqrt3/2)}`
Find the principal value of the following:
`cosec^-1(-sqrt2)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`
For the principal value, evaluate the following:
`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`
For the principal value, evaluate the following:
`cosec^-1(2tan (11pi)/6)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
Solve for x, if:
tan (cos-1x) = `2/sqrt5`
Find the value of `cos^-1(cos (13pi)/6)`.
Find the value of `tan^-1 (tan (9pi)/8)`.
Find the value of `sec(tan^-1 y/2)`
Find value of tan (cos–1x) and hence evaluate `tan(cos^-1 8/17)`
Find the value of `sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))`
Find the values of x which satisfy the equation sin–1x + sin–1(1 – x) = cos–1x.
The principal value branch of sec–1 is ______.
The value of `sin^-1 (cos((43pi)/5))` is ______.
The value of cot (sin–1x) is ______.
The value of `tan(cos^-1 3/5 + tan^-1 1/4)` is ______.
Find the value of `tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)`
Which of the following is the principal value branch of cosec–1x?
The value of `cos^-1 (cos (3pi)/2)` is equal to ______.
The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.
If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.
If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.
The set of values of `sec^-1 (1/2)` is ______.
The value of `cos^-1 (cos (14pi)/3)` is ______.
`2 "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
Which of the following is the principal value branch of `"cos"^-1 "x"`