Advertisements
Advertisements
प्रश्न
For the principal value, evaluate of the following:
`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`
उत्तर
`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`
`=sin^-1{sin(-pi/2)}+cos^-1(cos pi/6)`
`=-pi/3+pi/6` `[because"Range of sine is"[-pi/2,pi/2]; -pi/3 in [-pi/2, pi/2] "and range of cosine is" [0,pi] ; pi/6 in [0, pi]]`
`=-pi/6`
`therefore sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)=-pi/6`
APPEARS IN
संबंधित प्रश्न
The principal solution of `cos^-1(-1/2)` is :
Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`
Solve `3tan^(-1)x + cot^(-1) x = pi`
if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc
Find the principal value of the following:
`sin^-1(cos (2pi)/3)`
Find the principal value of the following:
`sin^-1(cos (3pi)/4)`
For the principal value, evaluate of the following:
`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`
Find the principal value of the following:
`tan^-1(2cos (2pi)/3)`
For the principal value, evaluate of the following:
`tan^-1(-1)+cos^-1(-1/sqrt2)`
Find the principal value of the following:
`sec^-1(2sin (3pi)/4)`
Find the principal value of the following:
`sec^-1(2tan (3pi)/4)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)-2sec^-1(2tan pi/6)`
Find the principal value of the following:
cosec-1(-2)
Find the principal value of the following:
`\text(cosec)^-1(2/sqrt3)`
For the principal value, evaluate the following:
`cosec^-1(2tan (11pi)/6)`
if sec-1 x = cosec-1 v. show that `1/x^2 + 1/y^2 = 1`
If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`
The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below
Commodity | A | B | C | D | E | F |
Price in the year 2000 (₹) | 50 | x | 30 | 70 | 116 | 20 |
Price in the year 2010 (₹) | 60 | 24 | y | 80 | 120 | 28 |
Find value of tan (cos–1x) and hence evaluate `tan(cos^-1 8/17)`
Find the value of `sin[2cot^-1 ((-5)/12)]`
Let θ = sin–1 (sin (– 600°), then value of θ is ______.
The value of sin (2 sin–1 (.6)) is ______.
The value of `tan(cos^-1 3/5 + tan^-1 1/4)` is ______.
Find the value of `tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)`
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
Find the value of `tan^-1 (tan (2pi)/3)`
Find the value of the expression `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))`
Which of the following is the principal value branch of cos–1x?
The value of `cot[cos^-1 (7/25)]` is ______.
The principal value of `cos^-1 (- 1/2)` is ______.
The value of `sin^-1 (sin (3pi)/5)` is ______.
The set of values of `sec^-1 (1/2)` is ______.
The principal value of `tan^-1 sqrt(3)` is ______.
The value of `cos^-1 (cos (14pi)/3)` is ______.
The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.
The principal value of `sin^-1 [cos(sin^-1 1/2)]` is `pi/3`.
If `5 sin theta = 3 "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.
If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.
If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.
What is the value of x so that the seven-digit number 8439 × 53 is divisible by 99?