Advertisements
Advertisements
प्रश्न
Find the value of the expression `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))`
उत्तर
`sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))`
⇒ `sin[tan^-1 ((2 xx 1/3)/(1 - (1/3)^2))] + cos[cos^-1 1/sqrt(1 + (2sqrt(2))^2)]` ......`[because tan^-1x = cos^-1 (1/sqrt(1 + x^2))]`
⇒ `sin[tan^-1 ((2/3)/(1 - 1/9))] + cos[cos^-1 (1/3)]`
⇒ `sin[tan^-1 (3/4)] + 1/3`
⇒ `sin[sin^-1 (3/5)] + 1/3`
⇒ `3/5 + 1/3`
⇒ `14/15` ......`[because tan^-1x = sin^-1 x/sqrt(1 + x^2)]`
Hence, `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2)) = 14/15`
APPEARS IN
संबंधित प्रश्न
Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`
if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc
Find the principal value of the following:
`sin^-1(cos (2pi)/3)`
For the principal value, evaluate of the following:
`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`
Find the principal value of the following:
`tan^-1(2cos (2pi)/3)`
For the principal value, evaluate the following:
`tan^-1sqrt3-sec^-1(-2)`
Find the principal value of the following:
cosec-1(-2)
Find the principal value of the following:
`cosec^-1(2cos (2pi)/3)`
Find the principal value of the following:
`cot^-1(-sqrt3)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below
Commodity | A | B | C | D | E | F |
Price in the year 2000 (₹) | 50 | x | 30 | 70 | 116 | 20 |
Price in the year 2010 (₹) | 60 | 24 | y | 80 | 120 | 28 |
Find the value of `sin[2cot^-1 ((-5)/12)]`
The principal value of the expression cos–1[cos (– 680°)] is ______.
The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.
The value of sin (2 sin–1 (.6)) is ______.
The value of tan2 (sec–12) + cot2 (cosec–13) is ______.
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
Which of the following is the principal value branch of cos–1x?
The value of `sin^-1 [cos((33pi)/5)]` is ______.
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
The value of `sin^-1 (sin (3pi)/5)` is ______.
The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.
The minimum value of n for which `tan^-1 "n"/pi > pi/4`, n ∈ N, is valid is 5.
The general solution of the equation `"cot" theta - "tan" theta = "sec" theta` is ____________ where `(n in I).`
What is the principal value of `cot^-1 ((-1)/sqrt(3))`?