Advertisements
Advertisements
Question
Find the value of the expression `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))`
Solution
`sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))`
⇒ `sin[tan^-1 ((2 xx 1/3)/(1 - (1/3)^2))] + cos[cos^-1 1/sqrt(1 + (2sqrt(2))^2)]` ......`[because tan^-1x = cos^-1 (1/sqrt(1 + x^2))]`
⇒ `sin[tan^-1 ((2/3)/(1 - 1/9))] + cos[cos^-1 (1/3)]`
⇒ `sin[tan^-1 (3/4)] + 1/3`
⇒ `sin[sin^-1 (3/5)] + 1/3`
⇒ `3/5 + 1/3`
⇒ `14/15` ......`[because tan^-1x = sin^-1 x/sqrt(1 + x^2)]`
Hence, `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2)) = 14/15`
APPEARS IN
RELATED QUESTIONS
Solve `3tan^(-1)x + cot^(-1) x = pi`
Find the principal value of the following:
`sin^-1(cos (2pi)/3)`
Find the principal value of the following:
`sin^-1((sqrt3+1)/(2sqrt2))`
Find the principal value of the following:
`sin^-1(cos (3pi)/4)`
For the principal value, evaluate of the following:
`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`
Find the principal value of the following:
`tan^-1(2cos (2pi)/3)`
For the principal value, evaluate of the following:
`tan^-1{2sin(4cos^-1 sqrt3/2)}`
Find the principal value of the following:
`sec^-1(-sqrt2)`
Find the principal value of the following:
`sec^-1(2sin (3pi)/4)`
For the principal value, evaluate the following:
`cosec^-1(2tan (11pi)/6)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
if sec-1 x = cosec-1 v. show that `1/x^2 + 1/y^2 = 1`
If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`
The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below
Commodity | A | B | C | D | E | F |
Price in the year 2000 (₹) | 50 | x | 30 | 70 | 116 | 20 |
Price in the year 2010 (₹) | 60 | 24 | y | 80 | 120 | 28 |
Find the value of `tan^-1 (tan (9pi)/8)`.
Find value of tan (cos–1x) and hence evaluate `tan(cos^-1 8/17)`
Find the value of `sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))`
The principal value branch of sec–1 is ______.
The domain of sin–1 2x is ______.
The value of `tan(cos^-1 3/5 + tan^-1 1/4)` is ______.
The value of tan2 (sec–12) + cot2 (cosec–13) is ______.
Find the value of `tan^-1 (tan (2pi)/3)`
The value of sin (2 tan–1(0.75)) is equal to ______.
The value of `cos^-1 (cos (3pi)/2)` is equal to ______.
The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.
`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.
What is the principle value of `sin^-1 (1/sqrt(2))`?
What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`