English

Find the value of the expression sin(2tan-1 13)+cos(tan-122) - Mathematics

Advertisements
Advertisements

Question

Find the value of the expression `sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2))`

Sum

Solution

`sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2))`

⇒ `sin[tan^-1 ((2 xx 1/3)/(1 - (1/3)^2))] + cos[cos^-1  1/sqrt(1 + (2sqrt(2))^2)]`  ......`[because tan^-1x = cos^-1 (1/sqrt(1 + x^2))]`

⇒ `sin[tan^-1 ((2/3)/(1 - 1/9))] + cos[cos^-1  (1/3)]`

⇒ `sin[tan^-1 (3/4)] + 1/3`

⇒ `sin[sin^-1 (3/5)] + 1/3`

⇒ `3/5 + 1/3`

⇒ `14/15`  ......`[because tan^-1x = sin^-1  x/sqrt(1 + x^2)]`

Hence, `sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2)) = 14/15`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Exercise [Page 36]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Exercise | Q 8 | Page 36

RELATED QUESTIONS

Solve `3tan^(-1)x + cot^(-1) x = pi`


Find the principal value of the following:

`sin^-1(cos  (2pi)/3)`


Find the principal value of the following:

`sin^-1((sqrt3+1)/(2sqrt2))`


Find the principal value of the following:

`sin^-1(cos  (3pi)/4)`


For the principal value, evaluate of the following:

`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`


Find the principal value of the following:

`tan^-1(2cos  (2pi)/3)`


For the principal value, evaluate of the following:

`tan^-1{2sin(4cos^-1  sqrt3/2)}`


Find the principal value of the following:

`sec^-1(-sqrt2)`


Find the principal value of the following:

`sec^-1(2sin  (3pi)/4)`


For the principal value, evaluate the following:

`cosec^-1(2tan  (11pi)/6)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


if sec-1  x = cosec-1  v. show that `1/x^2 + 1/y^2 = 1`


If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`  


The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below

Commodity A B C D E F
Price in the year 2000 (₹) 50 x 30 70 116 20
Price in the year 2010 (₹) 60 24 80  120 28

Find the value of `tan^-1 (tan  (9pi)/8)`.


Find value of tan (cos–1x) and hence evaluate `tan(cos^-1  8/17)`


Find the value of `sin(2tan^-1  2/3) + cos(tan^-1 sqrt(3))`


The principal value branch of sec–1 is ______.


The domain of sin–1 2x is ______.


The value of `tan(cos^-1  3/5 + tan^-1  1/4)` is ______.


The value of tan2 (sec–12) + cot2 (cosec–13) is ______.


Find the value of `tan^-1 (tan  (2pi)/3)`


The value of sin (2 tan–1(0.75)) is equal to ______.


The value of `cos^-1 (cos  (3pi)/2)` is equal to ______.


The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.


`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.


What is the principle value of `sin^-1 (1/sqrt(2))`?


What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×