Advertisements
Advertisements
Question
For the principal value, evaluate of the following:
`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`
Solution
`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`
`=sin^-1{sin(-pi/6)}+2cos^-1(cos (5pi)/6)` `[because "Range of sine is"[-pi/2,pi/2];-pi/6in[-pi/2,pi/2] "and range of cosine is" [0,pi] ; (5pi)/6 in[0,pi]]`
`=-pi/6+2((5pi)/6)`
`=-pi/6+(5pi)/3`
`=(9pi)/6`
`=(3pi)/2`
`therefore sin^-1(-1/2)+2cos^-1(-sqrt3/2)=(3pi)/2`
APPEARS IN
RELATED QUESTIONS
Solve `3tan^(-1)x + cot^(-1) x = pi`
For the principal value, evaluate of the following:
`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`
Find the principal value of the following:
`tan^-1(1/sqrt3)`
Find the principal value of the following:
`sec^-1(-sqrt2)`
Find the principal value of the following:
`sec^-1(2)`
Find the principal value of the following:
`sec^-1(2sin (3pi)/4)`
For the principal value, evaluate the following:
`tan^-1sqrt3-sec^-1(-2)`
Find the principal value of the following:
`cot^-1(-sqrt3)`
Find the principal value of the following:
`cot^-1(sqrt3)`
Find the principal value of the following:
`cot^-1(-1/sqrt3)`
If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`
The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below
Commodity | A | B | C | D | E | F |
Price in the year 2000 (₹) | 50 | x | 30 | 70 | 116 | 20 |
Price in the year 2010 (₹) | 60 | 24 | y | 80 | 120 | 28 |
Find the principal value of cos–1x, for x = `sqrt(3)/2`.
Find the value of `tan^-1 (tan (9pi)/8)`.
The value of cot (sin–1x) is ______.
Let θ = sin–1 (sin (– 600°), then value of θ is ______.
If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.
The value of `tan(cos^-1 3/5 + tan^-1 1/4)` is ______.
Find the value of `tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)`
Find the value of `tan^-1 (tan (2pi)/3)`
Find the value of `4tan^-1 1/5 - tan^-1 1/239`
Which of the following is the principal value branch of cos–1x?
Which of the following is the principal value branch of cosec–1x?
If `cos(sin^-1 2/5 + cos^-1x)` = 0, then x is equal to ______.
The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.
The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.
The value of the expression (cos–1x)2 is equal to sec2x.
The period of the function f(x) = cos4x + tan3x is ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
If `"tan"^-1 "x" + "tan"^-1"y + tan"^-1 "z" = pi/2, "x,y,x" > 0,` then the value of xy+yz+zx is ____________.
Which of the following is the principal value branch of `"cos"^-1 "x"`
What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`
Assertion (A): Maximum value of (cos–1 x)2 is π2.
Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.
Evaluate `sin^-1 (sin (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.