Advertisements
Advertisements
Question
The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.
Solution
The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is 1.
Explanation:
`tan((sin^-1x + cos^-1x)/2) = tan (pi/4)` .....`(because sin^-1x + cos^-1x = pi/2)`
= `tan pi/4`
= 1
APPEARS IN
RELATED QUESTIONS
The principal solution of `cos^-1(-1/2)` is :
Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`
Find the principal value of the following:
`sin^-1(-sqrt3/2)`
Find the principal value of the following:
`sin^-1(tan (5pi)/4)`
For the principal value, evaluate of the following:
`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`
For the principal value, evaluate of the following:
`tan^-1(-1)+cos^-1(-1/sqrt2)`
Find the principal value of the following:
`sec^-1(2tan (3pi)/4)`
For the principal value, evaluate the following:
`tan^-1sqrt3-sec^-1(-2)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)-2sec^-1(2tan pi/6)`
Find the principal value of the following:
`cosec^-1(-sqrt2)`
For the principal value, evaluate the following:
`sin^-1[cos{2\text(cosec)^-1(-2)}]`
For the principal value, evaluate the following:
`cosec^-1(2tan (11pi)/6)`
Find the principal value of the following:
`cot^-1(tan (3pi)/4)`
Solve for x, if:
tan (cos-1x) = `2/sqrt5`
Find the value of `cos^-1(cos (13pi)/6)`.
Find the value of `sin[2cot^-1 ((-5)/12)]`
The value of tan2 (sec–12) + cot2 (cosec–13) is ______.
Find the value of the expression `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))`
Find the value of `4tan^-1 1/5 - tan^-1 1/239`
If `cos(sin^-1 2/5 + cos^-1x)` = 0, then x is equal to ______.
The principal value of `cos^-1 (- 1/2)` is ______.
If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.
The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.
If `5 sin theta = 3 "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.
The period of the function f(x) = cos4x + tan3x is ____________.
`2 "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
Evaluate `sin^-1 (sin (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.