Advertisements
Advertisements
Question
Find the principal value of the following:
`sec^-1(2tan (3pi)/4)`
Solution
Let `sec^-1(2tan (3pi)/4)=y`
Then,
`secy=2tan (3pi)/4`
We know that the range of the principal value branch is `[0,pi]-{pi/2}.`
Thus,
`secy = 2tan(3pi)/4=2xx(-1)=-2=sec((2pi)/3)`
`=>y=(2pi)/3in[0,pi]`
Hence, the principal value of `sec^-1(2tan (3pi)/4) is (2pi)/3.`
APPEARS IN
RELATED QUESTIONS
For the principal value, evaluate of the following:
`cos^-1 1/2+2sin^-1 (1/2)`
For the principal value, evaluate of the following:
`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`
For the principal value, evaluate of the following:
`tan^-1{2sin(4cos^-1 sqrt3/2)}`
Find the principal value of the following:
`sec^-1(-sqrt2)`
Find the principal value of the following:
`sec^-1(2)`
For the principal value, evaluate the following:
`tan^-1sqrt3-sec^-1(-2)`
Find the principal value of the following:
`cosec^-1(-sqrt2)`
Find the principal value of the following:
cosec-1(-2)
For the principal value, evaluate the following:
`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`
Find the principal value of the following:
`cot^-1(-1/sqrt3)`
Find the principal value of the following:
`cot^-1(tan (3pi)/4)`
Solve for x, if:
tan (cos-1x) = `2/sqrt5`
If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`
Find the value of `sec(tan^-1 y/2)`
The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.
Let θ = sin–1 (sin (– 600°), then value of θ is ______.
The value of `tan(cos^-1 3/5 + tan^-1 1/4)` is ______.
The value of tan2 (sec–12) + cot2 (cosec–13) is ______.
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
Find the value of the expression `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))`
Find the value of `4tan^-1 1/5 - tan^-1 1/239`
Which of the following is the principal value branch of cos–1x?
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
The value of `cos^-1 (cos (14pi)/3)` is ______.
The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.
The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.
The value of the expression (cos–1x)2 is equal to sec2x.
The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.
The period of the function f(x) = cos4x + tan3x is ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.
If `"tan"^-1 "x" + "tan"^-1"y + tan"^-1 "z" = pi/2, "x,y,x" > 0,` then the value of xy+yz+zx is ____________.
What is the value of x so that the seven-digit number 8439 × 53 is divisible by 99?
What is the principle value of `sin^-1 (1/sqrt(2))`?
What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`
Assertion (A): Maximum value of (cos–1 x)2 is π2.
Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.