Advertisements
Advertisements
Question
For the principal value, evaluate the following:
`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`
Solution
`sec^-1(sqrt2)+2cosec^-1(-sqrt2)=sec^-1(sec pi/4)+2cosec^-1[cosec(-pi/4)]`
`=pi/4-2xxpi/4`
`=pi/4-pi/2`
`=-pi/4`
APPEARS IN
RELATED QUESTIONS
The principal solution of `cos^-1(-1/2)` is :
Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`
The principal solution of the equation cot x=`-sqrt 3 ` is
Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`
Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`
Find the principal value of the following:
`sin^-1((sqrt3-1)/(2sqrt2))`
Find the principal value of the following:
`sin^-1((sqrt3+1)/(2sqrt2))`
Find the principal value of the following:
`sin^-1(cos (3pi)/4)`
Find the principal value of the following:
`sin^-1(tan (5pi)/4)`
Find the principal value of the following:
`tan^-1(cos pi/2)`
Find the principal value of the following:
`tan^-1(2cos (2pi)/3)`
Find the principal value of the following:
`sec^-1(2sin (3pi)/4)`
Find the principal value of the following:
`cosec^-1(-sqrt2)`
Find the principal value of the following:
cosec-1(-2)
For the principal value, evaluate the following:
`cosec^-1(2tan (11pi)/6)`
Find the principal value of the following:
`cot^-1(-sqrt3)`
Find the principal value of the following:
`cot^-1(sqrt3)`
Solve for x, if:
tan (cos-1x) = `2/sqrt5`
Find the value of `cos^-1(cos (13pi)/6)`.
Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.
Find the value of `sin[2cot^-1 ((-5)/12)]`
The value of `sin^-1 (cos((43pi)/5))` is ______.
The value of cot (sin–1x) is ______.
The domain of sin–1 2x is ______.
The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.
Let θ = sin–1 (sin (– 600°), then value of θ is ______.
The value of `tan(cos^-1 3/5 + tan^-1 1/4)` is ______.
The value of the expression sin [cot–1 (cos (tan–11))] is ______.
Find the value of `tan^-1 (tan (2pi)/3)`
The value of `sin^-1 [cos((33pi)/5)]` is ______.
The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.
The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.
The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.
The general solution of the equation `"cot" theta - "tan" theta = "sec" theta` is ____________ where `(n in I).`
If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
Which of the following is the principal value branch of `"cos"^-1 "x"`
What is the value of x so that the seven-digit number 8439 × 53 is divisible by 99?
What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`