Advertisements
Advertisements
Question
The domain of sin–1 2x is ______.
Options
[0, 1]
[– 1, 1]
`[-1/2, 1/2]`
[–2, 2]
Solution
The domain of sin–1 2x is `[-1/2, 1/2]`.
Explanation:
Let sin–12x = θ
So that 2x = sin θ.
Now – 1 ≤ sin θ ≤ 1
i.e.,– 1 ≤ 2x ≤ 1
Which gives `-1/2 ≤ x ≤ 1/2`.
APPEARS IN
RELATED QUESTIONS
Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`
Find the principal value of the following:
`sin^-1(-sqrt3/2)`
Find the principal value of the following:
`tan^-1(1/sqrt3)`
Find the principal value of the following:
`tan^-1(2cos (2pi)/3)`
For the principal value, evaluate of the following:
`tan^-1(-1)+cos^-1(-1/sqrt2)`
Find the principal value of the following:
`cosec^-1(-sqrt2)`
For the principal value, evaluate the following:
`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`
For the principal value, evaluate the following:
`cosec^-1(2tan (11pi)/6)`
Find the principal value of the following:
`cot^-1(-sqrt3)`
Find the principal value of the following:
`cot^-1(sqrt3)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
Solve for x, if:
tan (cos-1x) = `2/sqrt5`
Find the value of `sin[2cot^-1 ((-5)/12)]`
Find the values of x which satisfy the equation sin–1x + sin–1(1 – x) = cos–1x.
Let θ = sin–1 (sin (– 600°), then value of θ is ______.
The value of the expression sin [cot–1 (cos (tan–11))] is ______.
Find the value of `4tan^-1 1/5 - tan^-1 1/239`
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
The value of `cos^-1 (cos (3pi)/2)` is equal to ______.
The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.
The principal value of `cos^-1 (- 1/2)` is ______.
The value of `sin^-1 (sin (3pi)/5)` is ______.
The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.
The value of the expression (cos–1x)2 is equal to sec2x.
The general solution of the equation `"cot" theta - "tan" theta = "sec" theta` is ____________ where `(n in I).`
If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.
Which of the following is the principal value branch of `"cos"^-1 "x"`