Advertisements
Advertisements
Question
Find the principal value of the following:
`cot^-1(sqrt3)`
Solution
Let `cot^-1(sqrt3)=y`
Then,
`coty=sqrt3`
We know that the range of the principal value branch is (0, π).
Thus,
`coty-sqrt3=cot(pi/6)`
`=>y=pi/6in(0,pi)`
Hence, the principal value of `cot^-1(sqrt3) is pi/6.`
APPEARS IN
RELATED QUESTIONS
Solve `3tan^(-1)x + cot^(-1) x = pi`
if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc
Find the principal value of the following:
`sin^-1((sqrt3+1)/(2sqrt2))`
Find the principal value of the following:
`sin^-1(cos (3pi)/4)`
For the principal value, evaluate of the following:
`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`
Find the principal value of the following:
`tan^-1(1/sqrt3)`
Find the principal value of the following:
`tan^-1(cos pi/2)`
For the principal value, evaluate of the following:
`tan^-1(-1)+cos^-1(-1/sqrt2)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)-2sec^-1(2tan pi/6)`
Find the principal value of the following:
`cosec^-1(-sqrt2)`
Find the principal value of the following:
`cot^-1(-sqrt3)`
Find the principal value of the following:
`cot^-1(-1/sqrt3)`
Solve for x, if:
tan (cos-1x) = `2/sqrt5`
Find the principal value of cos–1x, for x = `sqrt(3)/2`.
Find the value of `cos^-1(cos (13pi)/6)`.
Find the value of `sin[2cot^-1 ((-5)/12)]`
The value of `sin^-1 (cos((43pi)/5))` is ______.
Let θ = sin–1 (sin (– 600°), then value of θ is ______.
The value of sin (2 sin–1 (.6)) is ______.
Find the value of `tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)`
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
Find the value of `tan^-1 (tan (2pi)/3)`
Find the value of `4tan^-1 1/5 - tan^-1 1/239`
The value of `sin^-1 [cos((33pi)/5)]` is ______.
The value of `cos^-1 (cos (3pi)/2)` is equal to ______.
If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.
The value of `cot[cos^-1 (7/25)]` is ______.
The value of `sin^-1 (sin (3pi)/5)` is ______.
The set of values of `sec^-1 (1/2)` is ______.
The value of the expression (cos–1x)2 is equal to sec2x.
The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.
If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.
`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.
If `"tan"^-1 "x" + "tan"^-1"y + tan"^-1 "z" = pi/2, "x,y,x" > 0,` then the value of xy+yz+zx is ____________.
What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`
Assertion (A): Maximum value of (cos–1 x)2 is π2.
Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.