Advertisements
Advertisements
प्रश्न
Find the principal value of the following:
`cot^-1(sqrt3)`
उत्तर
Let `cot^-1(sqrt3)=y`
Then,
`coty=sqrt3`
We know that the range of the principal value branch is (0, π).
Thus,
`coty-sqrt3=cot(pi/6)`
`=>y=pi/6in(0,pi)`
Hence, the principal value of `cot^-1(sqrt3) is pi/6.`
APPEARS IN
संबंधित प्रश्न
Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`
if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc
Find the principal value of the following:
`sin^-1(-sqrt3/2)`
Find the principal value of the following:
`tan^-1(cos pi/2)`
For the principal value, evaluate of the following:
`tan^-1(-1)+cos^-1(-1/sqrt2)`
For the principal value, evaluate of the following:
`tan^-1{2sin(4cos^-1 sqrt3/2)}`
Find the principal value of the following:
`cosec^-1(2cos (2pi)/3)`
For the principal value, evaluate the following:
`sin^-1[cos{2\text(cosec)^-1(-2)}]`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
if sec-1 x = cosec-1 v. show that `1/x^2 + 1/y^2 = 1`
Find the principal value of cos–1x, for x = `sqrt(3)/2`.
Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.
Find the value of `sec(tan^-1 y/2)`
Find value of tan (cos–1x) and hence evaluate `tan(cos^-1 8/17)`
Find the value of `sin[2cot^-1 ((-5)/12)]`
Find the values of x which satisfy the equation sin–1x + sin–1(1 – x) = cos–1x.
The principal value branch of sec–1 is ______.
One branch of cos–1 other than the principal value branch corresponds to ______.
The domain of sin–1 2x is ______.
Let θ = sin–1 (sin (– 600°), then value of θ is ______.
If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.
The value of tan2 (sec–12) + cot2 (cosec–13) is ______.
Find the value of `tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)`
Find the value of `tan^-1 (tan (2pi)/3)`
Find the value of `4tan^-1 1/5 - tan^-1 1/239`
Which of the following is the principal value branch of cos–1x?
Which of the following is the principal value branch of cosec–1x?
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
The value of `cos^-1 (cos (3pi)/2)` is equal to ______.
If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.
The principal value of `cos^-1 (- 1/2)` is ______.
The value of `cos^-1 (cos (14pi)/3)` is ______.
The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.
The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.
The value of the expression (cos–1x)2 is equal to sec2x.
`2 "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.
Evaluate `sin^-1 (sin (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.