Advertisements
Advertisements
प्रश्न
if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc
उत्तर
`tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`
`tan^(-1)b + tan^(-1) c = pi - tan^(-1) (a)`
`tan^(-1) ((b+c)/(1-bc)) = pi - tan^(-1) a`
`(b+c)/(1-bc) = tan(pi - tan^(-1) a)`
`(b + c)/(1-bc) = -tan(tan^(-1)a)`
`(b+c)/(1-bc) = -a`
b + c = -a + abc
`:. a + b + c = abc`
APPEARS IN
संबंधित प्रश्न
Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`
Solve `3tan^(-1)x + cot^(-1) x = pi`
Find the principal value of the following:
`sin^-1(cos (3pi)/4)`
Find the principal value of the following:
`sin^-1(tan (5pi)/4)`
For the principal value, evaluate of the following:
`cos^-1 1/2+2sin^-1 (1/2)`
For the principal value, evaluate of the following:
`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`
For the principal value, evaluate of the following:
`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`
Find the principal value of the following:
`tan^-1(2cos (2pi)/3)`
Find the principal value of the following:
`cot^-1(tan (3pi)/4)`
Find the principal value of cos–1x, for x = `sqrt(3)/2`.
Find the value of `sec(tan^-1 y/2)`
Find value of tan (cos–1x) and hence evaluate `tan(cos^-1 8/17)`
The value of `sin^-1 (cos((43pi)/5))` is ______.
The domain of sin–1 2x is ______.
The principal value of `sin^-1 ((-sqrt(3))/2)` is ______.
Let θ = sin–1 (sin (– 600°), then value of θ is ______.
The value of `tan(cos^-1 3/5 + tan^-1 1/4)` is ______.
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
Find the value of the expression `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))`
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
The value of `cos^-1 (cos (3pi)/2)` is equal to ______.
The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.
The value of `sin^-1 (sin (3pi)/5)` is ______.
The principal value of `tan^-1 sqrt(3)` is ______.
The value of `cos^-1 (cos (14pi)/3)` is ______.
The general solution of the equation `"cot" theta - "tan" theta = "sec" theta` is ____________ where `(n in I).`
`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.
Assertion (A): Maximum value of (cos–1 x)2 is π2.
Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.