Advertisements
Advertisements
प्रश्न
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
पर्याय
[1, 2]
[–1, 1]
[0, 1]
None of these
उत्तर
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is [1, 2].
Explanation:
Let f(x) = `sin^-1 sqrt(x - 1)`
∵ `sqrt(x - 1) ≥ 0` and `-1 ≤ sqrt(x - 1) ≤ 1`
⇒ 0 ≤ x – 1 ≤ 1
⇒ 1 ≤ x ≤ 2
⇒ `x ∈ [1, 2]`
APPEARS IN
संबंधित प्रश्न
Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`
Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`
For the principal value, evaluate of the following:
`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`
Find the principal value of the following:
`tan^-1(cos pi/2)`
Find the principal value of the following:
`tan^-1(2cos (2pi)/3)`
For the principal value, evaluate of the following:
`tan^-1(-1)+cos^-1(-1/sqrt2)`
Find the principal value of the following:
`sec^-1(2)`
Find the principal value of the following:
`sec^-1(2sin (3pi)/4)`
Find the principal value of the following:
`\text(cosec)^-1(2/sqrt3)`
Find the principal value of the following:
`cot^-1(-sqrt3)`
Find the principal value of the following:
`cot^-1(sqrt3)`
if sec-1 x = cosec-1 v. show that `1/x^2 + 1/y^2 = 1`
The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below
Commodity | A | B | C | D | E | F |
Price in the year 2000 (₹) | 50 | x | 30 | 70 | 116 | 20 |
Price in the year 2010 (₹) | 60 | 24 | y | 80 | 120 | 28 |
Find the value of `cos^-1(cos (13pi)/6)`.
The value of `sin^-1 (cos((43pi)/5))` is ______.
The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.
If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.
The value of tan2 (sec–12) + cot2 (cosec–13) is ______.
The value of `sin^-1 [cos((33pi)/5)]` is ______.
The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.
The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.
The general solution of the equation `"cot" theta - "tan" theta = "sec" theta` is ____________ where `(n in I).`
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
If `"tan"^-1 "x" + "tan"^-1"y + tan"^-1 "z" = pi/2, "x,y,x" > 0,` then the value of xy+yz+zx is ____________.
Which of the following is the principal value branch of `"cos"^-1 "x"`
What is the value of x so that the seven-digit number 8439 × 53 is divisible by 99?
What is the principal value of `cot^-1 ((-1)/sqrt(3))`?