Advertisements
Advertisements
प्रश्न
The domain of the function cos–1(2x – 1) is ______.
पर्याय
[0, 1]
[–1, 1]
( –1, 1)
[0, π]
उत्तर
The domain of the function cos–1(2x – 1) is [0, 1].
Explanation:
The given function is cos–1(2x – 1)
Let f(x) = cos–1(2x – 1)
– 1 ≤ 2x – 1 ≤ 1 ⇒ – 1 + 1 ≤ 2x ≤ 1 + 1
0 ≤ 2x ≤ 2 ⇒ 0 ≤ x ≤ 1
∴ Domain of the given function is [0, 1].
APPEARS IN
संबंधित प्रश्न
The principal solution of the equation cot x=`-sqrt 3 ` is
Find the principal value of the following:
`sin^-1((sqrt3+1)/(2sqrt2))`
Find the principal value of the following:
`sin^-1(cos (3pi)/4)`
For the principal value, evaluate of the following:
`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`
For the principal value, evaluate of the following:
`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`
Find the principal value of the following:
`tan^-1(cos pi/2)`
Find the principal value of the following:
`sec^-1(2sin (3pi)/4)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)-2sec^-1(2tan pi/6)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`
Find the principal value of the following:
`cot^-1(-sqrt3)`
Find the principal value of the following:
`cot^-1(-1/sqrt3)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below
Commodity | A | B | C | D | E | F |
Price in the year 2000 (₹) | 50 | x | 30 | 70 | 116 | 20 |
Price in the year 2010 (₹) | 60 | 24 | y | 80 | 120 | 28 |
Find value of tan (cos–1x) and hence evaluate `tan(cos^-1 8/17)`
Find the value of `sin[2cot^-1 ((-5)/12)]`
Find the values of x which satisfy the equation sin–1x + sin–1(1 – x) = cos–1x.
One branch of cos–1 other than the principal value branch corresponds to ______.
The domain of sin–1 2x is ______.
The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.
If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.
The value of the expression sin [cot–1 (cos (tan–11))] is ______.
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
The value of sin (2 tan–1(0.75)) is equal to ______.
The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.
The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.
If `5 sin theta = 3 "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.
If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.
What is the value of x so that the seven-digit number 8439 × 53 is divisible by 99?