Advertisements
Advertisements
Question
The domain of the function cos–1(2x – 1) is ______.
Options
[0, 1]
[–1, 1]
( –1, 1)
[0, π]
Solution
The domain of the function cos–1(2x – 1) is [0, 1].
Explanation:
The given function is cos–1(2x – 1)
Let f(x) = cos–1(2x – 1)
– 1 ≤ 2x – 1 ≤ 1 ⇒ – 1 + 1 ≤ 2x ≤ 1 + 1
0 ≤ 2x ≤ 2 ⇒ 0 ≤ x ≤ 1
∴ Domain of the given function is [0, 1].
APPEARS IN
RELATED QUESTIONS
if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc
Find the principal value of the following:
`sin^-1(cos (2pi)/3)`
For the principal value, evaluate of the following:
`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`
Find the principal value of the following:
`tan^-1(2cos (2pi)/3)`
Find the principal value of the following:
`sec^-1(-sqrt2)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`
For the principal value, evaluate the following:
`sin^-1[cos{2\text(cosec)^-1(-2)}]`
For the principal value, evaluate the following:
`cosec^-1(2tan (11pi)/6)`
Find the principal value of the following:
`cot^-1(-1/sqrt3)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
Solve for x, if:
tan (cos-1x) = `2/sqrt5`
Find value of tan (cos–1x) and hence evaluate `tan(cos^-1 8/17)`
The principal value branch of sec–1 is ______.
The value of `sin^-1 (cos((43pi)/5))` is ______.
One branch of cos–1 other than the principal value branch corresponds to ______.
The value of cot (sin–1x) is ______.
The principal value of `sin^-1 ((-sqrt(3))/2)` is ______.
The value of tan2 (sec–12) + cot2 (cosec–13) is ______.
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
Find the value of `4tan^-1 1/5 - tan^-1 1/239`
Which of the following is the principal value branch of cos–1x?
The value of `sin^-1 [cos((33pi)/5)]` is ______.
If `cos(sin^-1 2/5 + cos^-1x)` = 0, then x is equal to ______.
The value of sin (2 tan–1(0.75)) is equal to ______.
The value of `cot[cos^-1 (7/25)]` is ______.
The principal value of `cos^-1 (- 1/2)` is ______.
The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.
The period of the function f(x) = cos4x + tan3x is ____________.