Advertisements
Advertisements
Question
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`
Solution
`sin^-1(-sqrt3/2)+cosec^-1(-2/sqrt3)=-sin^-1(sqrt3/2)+cosec^-1(-2/sqrt3)`
`=-sin^-1(sin pi/3)+cosec^-1[cosec(-pi/3)]`
`=-pi/3-pi/3`
`=-(2pi)/3`
APPEARS IN
RELATED QUESTIONS
The principal solution of the equation cot x=`-sqrt 3 ` is
if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc
Find the principal value of the following:
`sin^-1((sqrt3+1)/(2sqrt2))`
Find the principal value of the following:
`sin^-1(tan (5pi)/4)`
For the principal value, evaluate of the following:
`cos^-1 1/2+2sin^-1 (1/2)`
For the principal value, evaluate of the following:
`tan^-1{2sin(4cos^-1 sqrt3/2)}`
For the principal value, evaluate the following:
`tan^-1sqrt3-sec^-1(-2)`
Find the principal value of the following:
`cosec^-1(-sqrt2)`
Find the principal value of the following:
cosec-1(-2)
Find the principal value of the following:
`cot^-1(-1/sqrt3)`
The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below
Commodity | A | B | C | D | E | F |
Price in the year 2000 (₹) | 50 | x | 30 | 70 | 116 | 20 |
Price in the year 2010 (₹) | 60 | 24 | y | 80 | 120 | 28 |
Find the value of `tan^-1 (tan (9pi)/8)`.
Find the value of `sin[2cot^-1 ((-5)/12)]`
Find the value of `sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))`
Which of the following corresponds to the principal value branch of tan–1?
The domain of sin–1 2x is ______.
The value of the expression sin [cot–1 (cos (tan–11))] is ______.
Find the value of `tan^-1 (tan (2pi)/3)`
Find the value of the expression `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))`
The value of `sin^-1 [cos((33pi)/5)]` is ______.
The domain of the function cos–1(2x – 1) is ______.
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
If `cos(sin^-1 2/5 + cos^-1x)` = 0, then x is equal to ______.
The value of sin (2 tan–1(0.75)) is equal to ______.
The principal value of `cos^-1 (- 1/2)` is ______.
The principal value of `tan^-1 sqrt(3)` is ______.
The value of `cos^-1 (cos (14pi)/3)` is ______.
The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.
The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.
The principal value of `sin^-1 [cos(sin^-1 1/2)]` is `pi/3`.
If `5 sin theta = 3 "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.
The period of the function f(x) = cos4x + tan3x is ____________.
If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.
If `"tan"^-1 "x" + "tan"^-1"y + tan"^-1 "z" = pi/2, "x,y,x" > 0,` then the value of xy+yz+zx is ____________.
What is the principle value of `sin^-1 (1/sqrt(2))`?
What is the principal value of `cot^-1 ((-1)/sqrt(3))`?
Assertion (A): Maximum value of (cos–1 x)2 is π2.
Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.