English

For the Principal Value, Evaluate the Following: `Sin^-1(-sqrt3/2)+Cosec^-1(-2/Sqrt3)` - Mathematics

Advertisements
Advertisements

Question

For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`

Answer in Brief

Solution

`sin^-1(-sqrt3/2)+cosec^-1(-2/sqrt3)=-sin^-1(sqrt3/2)+cosec^-1(-2/sqrt3)`

`=-sin^-1(sin  pi/3)+cosec^-1[cosec(-pi/3)]`

`=-pi/3-pi/3`

`=-(2pi)/3`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.05 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.05 | Q 3.1 | Page 21

RELATED QUESTIONS

The principal solution of the equation cot x=`-sqrt 3 ` is


if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc 


Find the principal value of the following:

`sin^-1((sqrt3+1)/(2sqrt2))`


Find the principal value of the following:

`sin^-1(tan  (5pi)/4)`


For the principal value, evaluate of the following:

`cos^-1  1/2+2sin^-1  (1/2)`


For the principal value, evaluate of the following:

`tan^-1{2sin(4cos^-1  sqrt3/2)}`


For the principal value, evaluate the following:

`tan^-1sqrt3-sec^-1(-2)`


​Find the principal value of the following:

`cosec^-1(-sqrt2)`


​Find the principal value of the following:

cosec-1(-2)


Find the principal value of the following:

`cot^-1(-1/sqrt3)`


The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below

Commodity A B C D E F
Price in the year 2000 (₹) 50 x 30 70 116 20
Price in the year 2010 (₹) 60 24 80  120 28

Find the value of `tan^-1 (tan  (9pi)/8)`.


Find the value of `sin[2cot^-1 ((-5)/12)]`


Find the value of `sin(2tan^-1  2/3) + cos(tan^-1 sqrt(3))`


Which of the following corresponds to the principal value branch of tan–1?


The domain of sin–1 2x is ______.


The value of the expression sin [cot–1 (cos (tan–11))] is ______.


Find the value of `tan^-1 (tan  (2pi)/3)`


Find the value of the expression `sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2))`


The value of `sin^-1 [cos((33pi)/5)]` is ______.


The domain of the function cos–1(2x – 1) is ______.


The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.


If `cos(sin^-1  2/5 + cos^-1x)` = 0, then x is equal to ______.


The value of sin (2 tan–1(0.75)) is equal to ______.


The principal value of `cos^-1 (- 1/2)` is ______.


The principal value of `tan^-1 sqrt(3)` is ______.


The value of `cos^-1 (cos  (14pi)/3)` is ______.


The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.


The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.


The principal value of `sin^-1 [cos(sin^-1  1/2)]` is `pi/3`.


If `5 sin theta = 3  "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.


The period of the function f(x) = cos4x + tan3x is ____________.


If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.


If `"tan"^-1 "x" + "tan"^-1"y + tan"^-1 "z" = pi/2, "x,y,x" > 0,` then the value of xy+yz+zx is ____________.


What is the principle value of `sin^-1 (1/sqrt(2))`?


What is the principal value of `cot^-1 ((-1)/sqrt(3))`?


Assertion (A): Maximum value of (cos–1 x)2 is π2.

Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×