Advertisements
Advertisements
Question
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
Options
[1, 2]
[–1, 1]
[0, 1]
None of these
Solution
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is [1, 2].
Explanation:
Let f(x) = `sin^-1 sqrt(x - 1)`
∵ `sqrt(x - 1) ≥ 0` and `-1 ≤ sqrt(x - 1) ≤ 1`
⇒ 0 ≤ x – 1 ≤ 1
⇒ 1 ≤ x ≤ 2
⇒ `x ∈ [1, 2]`
APPEARS IN
RELATED QUESTIONS
The principal solution of the equation cot x=`-sqrt 3 ` is
Find the principal value of the following:
`sin^-1(-sqrt3/2)`
Find the principal value of the following:
`sin^-1((sqrt3+1)/(2sqrt2))`
Find the principal value of the following:
`sin^-1(cos (3pi)/4)`
For the principal value, evaluate of the following:
`cos^-1 1/2+2sin^-1 (1/2)`
Find the principal value of the following:
`sec^-1(-sqrt2)`
Find the principal value of the following:
`cosec^-1(2cos (2pi)/3)`
For the principal value, evaluate the following:
`sin^-1[cos{2\text(cosec)^-1(-2)}]`
The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below
Commodity | A | B | C | D | E | F |
Price in the year 2000 (₹) | 50 | x | 30 | 70 | 116 | 20 |
Price in the year 2010 (₹) | 60 | 24 | y | 80 | 120 | 28 |
Find the principal value of cos–1x, for x = `sqrt(3)/2`.
Find the value of `cos^-1(cos (13pi)/6)`.
Which of the following corresponds to the principal value branch of tan–1?
The value of cot (sin–1x) is ______.
The domain of sin–1 2x is ______.
The principal value of `sin^-1 ((-sqrt(3))/2)` is ______.
The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.
Let θ = sin–1 (sin (– 600°), then value of θ is ______.
Which of the following is the principal value branch of cos–1x?
If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.
If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.
The principal value of `tan^-1 sqrt(3)` is ______.
The value of `cos^-1 (cos (14pi)/3)` is ______.
The principal value of `sin^-1 [cos(sin^-1 1/2)]` is `pi/3`.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.
Which of the following is the principal value branch of `"cos"^-1 "x"`
What is the principle value of `sin^-1 (1/sqrt(2))`?
Assertion (A): Maximum value of (cos–1 x)2 is π2.
Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.
Evaluate `sin^-1 (sin (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.