Advertisements
Advertisements
Question
Find the principal value of the following:
`cosec^-1(2cos (2pi)/3)`
Solution
Let `cosec^-1(2cos (2pi)/3)=y`
Then,
`cosec y=2cos (2pi)/3`
We know that the range of the principal value branch is `[-pi/2,pi/2]-{0}.`
Thus,
`cosec y =2cos (2pi)/3=2xx(-1)/2=-1=cosec(-pi/2).`
`=>y=-pi/2in[-pi/2,pi/2],y!=0`
Hence, the principal value of `cosec^-1(2cos (2pi)/3) is -pi/2.`
APPEARS IN
RELATED QUESTIONS
Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`
The principal solution of the equation cot x=`-sqrt 3 ` is
Solve `3tan^(-1)x + cot^(-1) x = pi`
Find the principal value of the following:
`sin^-1(-sqrt3/2)`
For the principal value, evaluate of the following:
`cos^-1 1/2+2sin^-1 (1/2)`
For the principal value, evaluate of the following:
`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`
For the principal value, evaluate of the following:
`tan^-1(-1)+cos^-1(-1/sqrt2)`
Find the principal value of the following:
`sec^-1(2sin (3pi)/4)`
Find the principal value of the following:
`sec^-1(2tan (3pi)/4)`
Find the principal value of the following:
`cosec^-1(-sqrt2)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`
Find the principal value of the following:
`cot^-1(-sqrt3)`
Find the principal value of the following:
`cot^-1(-1/sqrt3)`
Find the principal value of the following:
`cot^-1(tan (3pi)/4)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`
Find the principal value of cos–1x, for x = `sqrt(3)/2`.
Find the value of `cos^-1(cos (13pi)/6)`.
Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.
The principal value of the expression cos–1[cos (– 680°)] is ______.
The value of cot (sin–1x) is ______.
Let θ = sin–1 (sin (– 600°), then value of θ is ______.
The value of sin (2 sin–1 (.6)) is ______.
If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.
Find the value of the expression `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))`
Find the value of `4tan^-1 1/5 - tan^-1 1/239`
Which of the following is the principal value branch of cosec–1x?
The domain of the function cos–1(2x – 1) is ______.
The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.
If `5 sin theta = 3 "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.
The period of the function f(x) = cos4x + tan3x is ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`
Evaluate `sin^-1 (sin (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.