English

​Find the Principal Value of the Following: `Cosec^-1(2cos (2pi)/3)` - Mathematics

Advertisements
Advertisements

Question

​Find the principal value of the following:

`cosec^-1(2cos  (2pi)/3)`

Solution

Let `cosec^-1(2cos  (2pi)/3)=y`

Then,

`cosec  y=2cos  (2pi)/3`

We know that the range of the principal value branch is `[-pi/2,pi/2]-{0}.`

Thus,

`cosec  y =2cos  (2pi)/3=2xx(-1)/2=-1=cosec(-pi/2).`

`=>y=-pi/2in[-pi/2,pi/2],y!=0`

Hence, the principal value of `cosec^-1(2cos  (2pi)/3)   is   -pi/2.`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.05 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.05 | Q 1.4 | Page 21

RELATED QUESTIONS

Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`


The principal solution of the equation cot x=`-sqrt 3 ` is


Solve `3tan^(-1)x + cot^(-1) x = pi`


Find the principal value of the following:

`sin^-1(-sqrt3/2)`


For the principal value, evaluate of the following:

`cos^-1  1/2+2sin^-1  (1/2)`


For the principal value, evaluate of the following:

`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`


For the principal value, evaluate of the following:

`tan^-1(-1)+cos^-1(-1/sqrt2)`


Find the principal value of the following:

`sec^-1(2sin  (3pi)/4)`


Find the principal value of the following:

`sec^-1(2tan  (3pi)/4)`


​Find the principal value of the following:

`cosec^-1(-sqrt2)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`


Find the principal value of the following:

`cot^-1(-sqrt3)`


Find the principal value of the following:

`cot^-1(-1/sqrt3)`


Find the principal value of the following:

`cot^-1(tan  (3pi)/4)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`  


Find the principal value of cos–1x, for x = `sqrt(3)/2`.


Find the value of `cos^-1(cos  (13pi)/6)`.


Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.


The principal value of the expression cos–1[cos (– 680°)] is ______.


The value of cot (sin–1x) is ______.


Let θ = sin–1 (sin (– 600°), then value of θ is ______.


The value of sin (2 sin–1 (.6)) is ______.


If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.


Find the value of the expression `sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2))`


Find the value of `4tan^-1  1/5 - tan^-1  1/239`


Which of the following is the principal value branch of cosec–1x?


The domain of the function cos–1(2x – 1) is ______.


The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.


If `5 sin theta = 3  "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.


The period of the function f(x) = cos4x + tan3x is ____________.


`"cos" ["tan"^-1 {"sin" ("cot"^-1  "x")}]` is equal to ____________.


What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`


Evaluate `sin^-1 (sin  (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×