Advertisements
Advertisements
Question
Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`
Solution
`Let tan^(-1)=y and cos^(-1)(-1/2)=z`
`tany=1=tan(pi/4) and cosz=-1/2=-cos(pi/3)=cos(pi-pi/3)=cos((2pi)/3)`
The ranges of principal value branch of tan−1 and cos−1 are `(-pi/2,pi/2)and[0,pi] ` respectively
`therefore tan^(-1)=pi/4 and cos^(-1)(-1/2)=2pi/3`
`therefore tan^(-1)(1)+cos^(-1)(-1/2)=pi/4+(2pi)/3=(11pi)/12`
APPEARS IN
RELATED QUESTIONS
The principal solution of `cos^-1(-1/2)` is :
Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`
Solve `3tan^(-1)x + cot^(-1) x = pi`
if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc
Find the principal value of the following:
`sin^-1(tan (5pi)/4)`
Find the principal value of the following:
`sec^-1(2)`
Find the principal value of the following:
`sec^-1(2tan (3pi)/4)`
For the principal value, evaluate the following:
`tan^-1sqrt3-sec^-1(-2)`
Find the principal value of the following:
`cosec^-1(2cos (2pi)/3)`
For the principal value, evaluate the following:
`sin^-1[cos{2\text(cosec)^-1(-2)}]`
Solve for x, if:
tan (cos-1x) = `2/sqrt5`
If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`
Find the value of `tan^-1 (tan (9pi)/8)`.
Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.
Find value of tan (cos–1x) and hence evaluate `tan(cos^-1 8/17)`
The value of `sin^-1 (cos((43pi)/5))` is ______.
Let θ = sin–1 (sin (– 600°), then value of θ is ______.
The value of `tan(cos^-1 3/5 + tan^-1 1/4)` is ______.
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
Find the value of the expression `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))`
The domain of the function cos–1(2x – 1) is ______.
If `cos(sin^-1 2/5 + cos^-1x)` = 0, then x is equal to ______.
The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.
If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.
The value of `cos^-1 (cos (14pi)/3)` is ______.
The value of the expression (cos–1x)2 is equal to sec2x.
If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.
Evaluate `sin^-1 (sin (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.