English

Write the principal value of tan^(-1)+cos^(-1)(-1/2) - Mathematics

Advertisements
Advertisements

Question

Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`

Solution

`Let tan^(-1)=y and cos^(-1)(-1/2)=z`

`tany=1=tan(pi/4) and cosz=-1/2=-cos(pi/3)=cos(pi-pi/3)=cos((2pi)/3)`

The ranges of principal value branch of tan−1 and cos−1 are `(-pi/2,pi/2)and[0,pi] ` respectively

`therefore tan^(-1)=pi/4 and cos^(-1)(-1/2)=2pi/3`

`therefore tan^(-1)(1)+cos^(-1)(-1/2)=pi/4+(2pi)/3=(11pi)/12`

 

shaalaa.com
  Is there an error in this question or solution?
2012-2013 (March) Delhi Set 1

RELATED QUESTIONS

The principal solution of `cos^-1(-1/2)` is :


Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`


Solve `3tan^(-1)x + cot^(-1) x = pi`


if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc 


Find the principal value of the following:

`sin^-1(tan  (5pi)/4)`


Find the principal value of the following:

`sec^-1(2)`


Find the principal value of the following:

`sec^-1(2tan  (3pi)/4)`


For the principal value, evaluate the following:

`tan^-1sqrt3-sec^-1(-2)`


​Find the principal value of the following:

`cosec^-1(2cos  (2pi)/3)`


For the principal value, evaluate the following:

`sin^-1[cos{2\text(cosec)^-1(-2)}]`


Solve for x, if:

tan (cos-1x) = `2/sqrt5`


If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`  


Find the value of `tan^-1 (tan  (9pi)/8)`.


Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.


Find value of tan (cos–1x) and hence evaluate `tan(cos^-1  8/17)`


The value of `sin^-1 (cos((43pi)/5))` is ______.


Let θ = sin–1 (sin (– 600°), then value of θ is ______.


The value of `tan(cos^-1  3/5 + tan^-1  1/4)` is ______.


Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`


Find the value of the expression `sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2))`


The domain of the function cos–1(2x – 1) is ______.


If `cos(sin^-1  2/5 + cos^-1x)` = 0, then x is equal to ______.


The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.


If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.


The value of `cos^-1 (cos  (14pi)/3)` is ______.


The value of the expression (cos–1x)2 is equal to sec2x.


If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.


Evaluate `sin^-1 (sin  (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×