Advertisements
Advertisements
Question
Write the value of `tan(2tan^(-1)(1/5))`
Solution
`2tan^(-1)x=tan^(-1)(2x)/(1-x^2)`
`therefore 2 tan^(-1)(1/5)=tan^(-1)((2(1/5))/(1-(1/5)^2))=tan^(-1)(5/12)`
Thus `tan (2tan^(-1)(1/5))=tan(tan^(-1)(5/12))=5/12`
APPEARS IN
RELATED QUESTIONS
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`tan^-1(tan2)`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
`sin^-1x=pi/6+cos^-1x`
`5tan^-1x+3cot^-1x=2x`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
Write the value of \[\tan^{- 1} \left( \frac{1}{x} \right)\] for x < 0 in terms of `cot^-1x`
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
If \[\cos^{- 1} x > \sin^{- 1} x\], then
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
Find the domain of `sec^(-1) x-tan^(-1)x`