English

Write the value of tan(2tan^(-1)(1/5)) - Mathematics

Advertisements
Advertisements

Question

Write the value of `tan(2tan^(-1)(1/5))`

Solution

`2tan^(-1)x=tan^(-1)(2x)/(1-x^2)`

`therefore 2 tan^(-1)(1/5)=tan^(-1)((2(1/5))/(1-(1/5)^2))=tan^(-1)(5/12)`

Thus `tan (2tan^(-1)(1/5))=tan(tan^(-1)(5/12))=5/12`

shaalaa.com
  Is there an error in this question or solution?
2012-2013 (March) Delhi Set 1

RELATED QUESTIONS

 

Prove that :

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`

 

Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`tan^-1(tan2)`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


`sin^-1x=pi/6+cos^-1x`


`5tan^-1x+3cot^-1x=2x`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


If \[\cos^{- 1} x > \sin^{- 1} x\], then


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Find the domain of `sec^(-1) x-tan^(-1)x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×